Preview

Innovations and Food Safety

Advanced search

Modern methods of pre-processing to improve the quality and nutritional value of dried fruits. a review

https://doi.org/10.31677/2311-0651-2025-50-4-8-42

Abstract

Traditional dietary habits, including the consumption of ultra-processed foods low in calories, high in sugar and salt, and insufficient consumption of fresh fruits and vegetables, negatively impact human health. Due to the seasonality of raw materials and limited access to fresh fruits and vegetables, these products are often available on the market in dried form, which ensures a long shelf life. The aim of this study is to review and analyze modern technologies and methods for producing high-quality dried fruits and fruit-based snacks with high nutritional value and acceptable organoleptic properties. The materials for this review are the results of scientific studies published between 2015 and 2025. A scientific search for sources on the topic of study was conducted using keywords in the bibliographic databases Scopus, Web of Science, PubMed, and Google Scholar. The data analysis included their systematization, generalization, interim findings, and an overall conclusion. A review of scientific publications revealed that various modern non-thermal pre-drying treatment methods, such as pulsed electric fields, ultrasonic treatment, high-hydrostatic treatment, pulsed light, and cold plasma, are used to ensure high nutritional value, maximum preservation of bioactive compounds, quality and safety, and a long shelf life of dried fruits and snacks. Vacuum impregnation and osmotic dehydration before drying contribute to increasing the nutritional value of dried fruits and improving the energy efficiency of the drying process. An important and promising approach to the production of dried snacks involves the use of food industry by-products, including fruit waste. This strategy not only addresses food waste but also creates nutrient-rich snacks or ingredients. Further research should be aimed at establishing optimal raw material processing regimes to improve the energy efficiency of the fruit and vegetable drying process for snack production, maximizing nutritional value preservation, improving organoleptic quality, and enhancing overall consumer acceptance

About the Authors

L. Ch. Burak
Limited Liability Company “BELROSAKVA”
Russian Federation

L. Ch. Burak, PhD in Food Science



A. N. Sapach
Limited Liability Company “BELROSAKVA”
Russian Federation

A. N. Sapach, Graduate Student



А. А. Lukin
South Ural State Agrarian University
Russian Federation

А. А. Lukin, PhD of Technical Sciences, Associate Professor



References

1. Burak L. Ch. Vliyanie sovremennyh sposobov obrabotki i sterilizacii na kachestvo plodoovoshchnogo syr’ya i sokovoj produkcii (The impact of modern processing and sterilization methods on the quality of fruit and vegetable raw materials and juice products), Moscow: INFRA‑M, 2025, 236 p., DOI: 10.12737/0.12737/2154991, ISBN: 978‑5‑16‑020036‑1.

2. Burak L. Ch. Health, Food & Biotechnology, 2025, Vol. 7, No. (2), pp. 41–75, DOI: 10.36107/hfb.2025.i2.s258.

3. Harris J., de Steenhuijsen Piters B., McMullin S. et al. Fruits and Vegetables for Healthy Diets: Priorities for Food System Research and Action, Science and Innovations for Food Systems Transformation, Cham, Switzerland: Springer International Publishing, 2023, P. 87–104, DOI: 10.1007/978‑3‑031‑15703‑5_6.

4. Morais R. M. S. C., Morais A. M. M. B., Dammak I. Functional Dehydrated Foods for Health Preservation, Journal of Food Quality, 2018, Vol. 3, P. 1–29, DOI: 10.1155/2018/1739636.

5. Karwacka M., Ciurzyńska A., Galus S., Janowicz M. The Effect of Storage Time and Temperature on Quality Changes in Freeze‑Dried Snacks Obtained With Fruit Pomace and Pectin Powders as a Sustainable Approach for New Product Development, Sustainability, 2024, Vol. 16, No. 11, P. 4736, DOI: 10.3390/su16114736.

6. Nowacka M., Mannozzi C., Dalla Rosa M., Tylewicz U. Sustainable Approach for Development Dried Snack Based on Actinidia deliciosa Kiwifruit, Applied Sciences, 2023, V. 13, No. 4, P. 2189, DOI: 10.3390/app13042189.

7. Rybicka I., Kiewlicz J., Kowalczewski P. Ł., Gliszczyńska‑Świgło A. Selected Dried Fruits as a Source of Nutrients, European Food Research and Technology, 2021, Vol. 247, No. 10, P. 2409–2419, DOI: 10.1007/s00217‑021‑03802‑1.

8. Burak L. Ch. Vestnik MGTU, 2025, Vol. 28, No. 2, pp. 273–295, DOI: 10.21443/1560‑9278‑2025‑28‑2‑273‑295. (In Russ.)

9. Fu H., Lee C. H., Nolden A. A., Kinchla A. J. Nutrient Density, Added Sugar, and Fiber Content of Commercially Available Fruit Snacks in the United States From 2017 to 2022, Nutrients, 2024, Vol. 16, No. 2, P. 292, DOI: 10.3390/nu16020292.

10. Burak L. Ch. Polzunovskij vestnik, 2024, No. 1, pp. 99–119, DOI: 10.25712/ASTU.2072‑8921.2024.01.013. (In Russ.)

11. Omel’ko V. A. Sovremennye problemy gigieny, radiacionnoj i ekologicheskoj mediciny, 2023, Vol. 13, No. S1, pp. 128–133. (In Russ.)

12. Makarenkova O. G., Shevyakova L. V., Bessonov V. V., Voprosy pitaniya, 2015, Vol. 84, No. S5, P. 51.

13. Nowacka M., Kowalska H., Tylewicz U. et al. Emerging Technologies in Dried Fruit Snacks: Nutritional Enrichment and Sustainable Production, Compr Rev Food Sci Food Saf, 2025, Vol. 24 (4), P. e70225, DOI: 10.1111/1541‑4337.70225.

14. Chobot M., Kozłowska M., Ignaczak A., Kowalska H. Development of Drying and Roasting Processes for the Production of Plant‑Based Pro‑Healthy Snacks in the Light of Nutritional Trends and Sustainable Techniques, Trends in Food Science & Technology, 2024, Vol. 149 (18), P. 104553, DOI: 10.1016/j.tifs.2024.104553.

15. Ciurzyńska A., Cieśluk P., Barwińska M. et al. Eating Habits and Sustainable Food Production in the Development of Innovative “Healthy Snacks”, Sustainability, 2019, Vol. 11, No. 10, P. 2800, DOI: 10.3390/su11102800.

16. Alvarez M. V., Bambace M. F., Quintana G. et al. Prebiotic‑Alginate Edible Coating on Fresh‑Cut Apple as a New Carrier for Probiotic Lactobacilli and Bifidobacteria, LWT, 2021, Vol. 137, P. 110483, DOI: 10.1016/j.lwt.2020.110483.

17. Radojčin M., Pavkov I., Bursać Kovačević D. et al. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review, Processes, 2021, Vol. 9, No. 1, P. 132, DOI: 10.3390/pr9010132.

18. Castagnini J. M., Tappi S., Tylewicz U. et al. Sustainable Development of Apple Snack Formulated With Blueberry Juice and Trehalose, Sustainability, 2021, Vol. 13, No. 16, P. 9204, DOI: 10.3390/su13169204.

19. Derossi A., Ricci I., Fiore Ricci A. G., Severini C. Apple Slices Enriched With Aloe vera by Vacuum Impregnation, Italian Journal of Food Science, 2018, Vol. 30, No. 2, P. 256–267, DOI: 10.14674/IJFS‑939.

20. 20. Radziejewska‑Kubzdela E., Szadzińska J., Biegańska‑Marecik R. et al. Effect of Ultrasound on Mass Transfer During Vacuum Impregnation and Selected Quality Parameters of Products: A Case Study of Carrots, Ultrasonics Sonochemistry, 2023, Vol. 99, No. 9, P. 106592, DOI: 10.1016/j.ultsonch.2023.106592.

21. Kaveh M., Nowacka M., Khalife E. et al. Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying, Processes, 2023, Vol. 11, No. 4, P. 978, DOI: 10.3390/pr11040978.

22. Özbek H. N., Koç B., Koçak Yanık D., Göğüş F. Hot Air‑Assisted Radiofrequency Drying of Avocado: Drying Behavior and the Associated Effect on the Characteristics of Avocado Powder, Journal of Food Process Engineering, 2022, Vol. 45, No. 9, P. 1–11, DOI: 10.1111/jfpe.14094.

23. Souza A. U. D., Corrêa J. L. G., Tanikawa D. H. et al. Hybrid Microwave‑Hot Air Drying of the Osmotically Treated Carrots, LWT, 2022, Vol. 156, P. 113046, DOI: 10.1016/j.lwt.2021.113046.

24. Blicharz‑Kania A., Vasiukov K., Sagan A. et al. Nutritional Value, Physical Properties, and Sensory Quality of Sugar‑Free Cereal Bars Fortified With Grape and Apple Pomace, Applied Sciences, 2023, Vol. 13, No. 18, P. 10531, DOI: 10.3390/app131810531.

25. Raleng A., Singh N. G. J., Chavan P., Attkan A. K. Opportunities in Valorisation of Industrial Food Waste Into Extruded Snack Products – A Review, Indian Journal of Agricultural Sciences, 2022, Vol. 92, No. 10, P. 1167–1174, DOI: 10.56093/ijas.v92i10.113487.

26. Burak L. Ch., Egorova Z. E., Sciences of Europe, 2024, No. 152, pp. 13–21, DOI: 10.5281/zeno‑do.14063716.

27. Salari S., Castigliego T., Ferreira J. et al. Development of Healthy and Clean‑Label Crackers Incorporating Apple and Carrot Pomace Flours, Sustainability, 2024, Vol. 16, No. 14, P. 5995, DOI: 10.3390/su16145995.

28. Vinod B. R., Asrey R., Sethi S. et al. Recent advances in vacuum impregnation of fruits and vegetables processing: A concise review, Heliyon, 2024, Vol. 10, P. e28023, DOI: 10.1016/j.heliyon.2024.e28023.

29. Saleena P., Jayashree E., Anees K. A. Comprehensive Review on Vacuum Impregnation: Mechanism, Applications and Prospects, Food and Bioprocess Technology, 2024, Vol. 17, No. 6, P. 1434–1447, DOI: 10.1007/s11947‑023‑03185‑z.

30. Panayampadan A. S., Alam M. S., Aslam R., Kaur J. Vacuum Impregnation Process and Its Potential in Modifying Sensory, Physicochemical and Nutritive Characteristics of Food Products, Food Engineering Reviews, 2022, Vol. 14, No. 2, P. 229–256, DOI: 10.1007/s12393‑022‑09312‑4.

31. Thomas B., Pulissery S. K., Sankalpa K. B. et al. Optimization and Modeling of Vacuum Impregnation of Pineapple Rings and Comparison With Osmotic Dehydration, Journal of Food Science, 2024, Vol. 89, No. 1, P. 494–512, DOI: 10.1111/1750‑3841.16875.

32. Mierzwa D., Szadzińska J., Gapiński B. et al. Assessment of Ultrasound‑Assisted Vacuum Impregnation as a Method for Modifying Cranberries’ Quality, Ultrasonics Sonochemistry, 2022, Vol. 89, P. 106117, DOI: 10.1016/j.ultsonch.2022.106117.

33. Mierzwa D., Szadzińska J., Radziejewska‑Kubzdela E. et al. Effectiveness of Cranberry (Vaccinium mac‑ rocarpon, cv. Pilgrim) Vacuum Impregnation: The Effect of Sample Pretreatment, Pressure, and Processing Time, Food and Bioproducts Processing, 2022, Vol. 134, P. 223234, DOI: 10.1016/j.fbp.2022.06.001.

34. Pizarro‑Oteíza S., Giovagnoli‑Vicuña C., Briones‑Labarca V., Salazar F. Effects of Optimized Osmotic Vacuum Impregnation on Quality Properties of Red Abalone (Haliotis rufescens) Drying, Journal of Food Measurement and Characterization, 2023, Vol. 17, No. 5, P. 4520–4529, DOI: 10.1007/s11694‑023‑01987‑5.

35. Sittisuanjik K., Chottanom P., Moongngarm A., Deeseenthum S. Pulsed Vacuum Osmotic Dehydration on Physiological Compound Enrichment of Model Food, Journal of Sustainability Science and Management, 2021, Vol. 16, No. 2, P. 38–52, DOI: 10.46754/jssm.2021.02.006.

36. Wang X., Kahraman O., Feng H. Impregnation‑Mediated Natural Fortification of Sliced Apples With Hypertonic Fruit Juices: Mass Transfer Kinetics and Product Quality, 2021 ASABE Annual International Virtual Meeting (July 12–16, 2021), 2021, Pap. 2100758, DOI: 10.13031/aim.202100758.

37. Derossi A., Francavilla M., Monteleone M. et al. From Biorefinery of Microalgal Biomass to Vacuum Impregnation of Fruit. A Multidisciplinary Strategy to Develop Innovative Food With Increased Nutritional Properties, Innovative Food Science & Emerging Technologies, 2021, Vol. 70, P. 102677, DOI: 10.1016/j.ifset.2021.102677.

38. Assis F. R., Rodrigues L. G. G., Tribuzi G. et al. Fortified Apple (Malus spp., var. Fuji) Snacks by Vacuum Impregnation of Calcium Lactate and Convective Drying, LWT, 2019, Vol. 113, P. 108298, DOI: 10.1016/j.lwt.2019.108298.

39. Betoret E., Betoret N., Calabuig‑Jiménez L. et al. Probiotic Survival and In Vitro Digestion of L. salivarius Spp. Salivarius Encapsulated by High Homogenization Pressures and Incorporated Into a Fruit Matrix, LWT, 2019, Vol. 111, P. 883888, DOI: 10.1016/j.lwt.2019.05.088.

40. De Oliveira P. M., Ramos A. M., Martins E. M. F. et al. Comparison of Vacuum Impregnation and Soaking Techniques for Addition of the Probiotic Lactobacillus acidophilus to Minimally Processed Melon, International Journal of Food Science & Technology, 2017, Vol. 52, No. 12, P. 2547–2554, DOI: 10.1111/ijfs.13540.

41. González‑Pérez J. E., Ramírez‑Corona N., López‑Malo A. Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non‑Thermal Methods, Food Engineering Reviews, 2021, Vol. 13, No. 2, P. 344374, DOI: 10.1007/s12393‑020‑09276‑3.

42. Santarelli V., Neri L., Moscetti R. et al. Combined Use of Blanching and Vacuum Impregnation With Trehalose and Green Tea Extract as Pre‑Treatment to Improve the Quality and Stability of Frozen Carrots, Food and Bioprocess Technology, 2021, Vol. 14, No. 7, P. 1326–1340, DOI: 10.1007/s11947‑021‑02637‑8.

43. Yılmaz F. M., Ersus Bilek S. Natural Colorant Enrichment of Apple Tissue With Black Carrot Concentrate Using Vacuum Impregnation, International Journal of Food Science & Technology, 2017, Vol. 52, No. 6, P. 15081516, DOI: 10.1111/ijfs.13426.

44. Santana Moreira M., De Almeida Paula D., Furtado Martins E. M. et al. Vacuum Impregnation of β‑Carotene and Lutein in Minimally Processed Fruit Salad, Journal of Food Processing and Preservation, 2018, Vol. 42, No. 3, P. e13545, DOI: 10.1111/jfpp.13545.

45. Demir E., Dymek K., Galindo F. G. Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance, Food and Bioprocess Technology, 2018, Vol. 11, No. 4, P. 809–817, DOI: 10.1007/s11947‑017‑2044‑7.

46. Nyoto I. C., Gómez Galindo F. A. Comparison Between Pulsed Electric Field and Moderate Electric Field for Their Effectiveness in Improving the Freezing Tolerance of Rocket Leaves, Biochemistry and Biophysics Reports, 2023, Vol. 35, P.101515, DOI: 10.1016/j.bbrep.2023.101515.

47. Velickova E., Tylewicz U., Dalla Rosa M. et al. Effect of Pulsed Electric Field Coupled With Vacuum Infusion on Quality Parameters of Frozen/Thawed Strawberries, Journal of Food Engineering, 2018, Vol. 233, P 57–64, DOI: 10.1016/j.jfoodeng.2018.03.030.

48. Mashkour M., Maghsoudlou Y., Kashaninejad M., Aalami M. Iron Fortification of Whole Potato Using Vacuum Impregnation Technique With a Pulsed Electric Field Pretreatment, Potato Research, 2018, Vol. 61, No. 4, P. 375389, DOI: 10.1007/s11540‑018‑9392‑1.

49. Trusinska M., Drudi F., Rybak K. et al. Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe vera Juices, Foods, 2023, Vol. 12, No. 21, P. 3957, DOI: 10.3390/foods12213957.

50. De Soares A. S., Ramos A. M., Vieira É. N. R. et al. Vacuum Impregnation of Chitosan‑Based Edible Coating in Minimally Processed Pumpkin, International Journal of Food Science & Technology, 2018, Vol. 53, No. 9, P. 2229–2238, DOI: 10.1111/ijfs.13811.

51. Senturk Parreidt T., Müller K., Schmid M. Alginate‑Based Edible Films and Coatings for Food Packaging Applications, Foods, 2018, Vol. 7, No. 10, P. 170, DOI: 10.3390/foods7100170.

52. Lech K., Figiel A., Michalska A. et al. The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum‑Microwave Drying of Pumpkin, Journal of Food Quality, 2018, P. 1–11, DOI: 10.1155/2018/7293932, ISBN: 1745‑4557.

53. Machneva I. A., Droficheva N. V., Prichko T. G., Plodovodstvo i vinogradarstvo Yuga Rossii, 2021, No. 70 (4), pp. 269–296, DOI: 10.30679/2219‑5335‑2021‑4‑70‑269‑296. (In Russ.)

54. Kowalska H., Marzec A., Domian E. et al. Edible Coatings as Osmotic Dehydration Pretreatment in Nutrient‑Enhanced Fruit or Vegetable Snacks Development: A Review, Comprehensive Reviews in Food Science and Food Safety, 2021, Vol. 20, No. 6, P. 5641–5674, DOI: 10.1111/1541‑4337.12837.

55. Ahmed I., Qazi I. M., Jamal S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables, Innovative Food Science & Emerging Technologies, 2016, Vol. 34, P. 29–43, DOI: 10.1016/j.ifset.2016.01.003.

56. Çağlayan D., Mazı B. I. Effects of Ultrasound‑Assisted Osmotic Dehydration as a Pretreatment and Finish Drying Methods on the Quality of Pumpkin Slices, Journal of Food Processing and Preservation, 2018, Vol. 42, No. 9,P. e13679, DOI: 10.1111/jfpp.13679.

57. Burak L. Ch., Sapach A. N., Pishchevye sistemy, 2023, Vol. 6, No. 1, pp. 80–94, DOI: 10.21323/2618‑9771‑2023‑6‑1‑80‑94. (In Russ.)

58. Saleena P., Jayashree E., Anees K. Recent Developments in Osmotic Dehydration of Fruits and Vegetables: A Review, Pharma Innovation, 2022, Vol. 11, No. 2, P. 40–50.

59. Masztalerz K., Figiel A., Michalska‑Ciechanowska A. et al. The Effect of Filtration on Physical and Chemical Properties of Osmo‑Dehydrated Material, Molecules, 2020, Vol. 25, No. 22, P. 5412, DOI: 10.3390/molecules25225412.

60. Nowicka P., Wojdyło A., Lech K., Figiel A. Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits, Food and Bioprocess Technology, 2015, Vol. 8, No. 4, P. 824836, DOI: 10.1007/s11947‑014‑1447‑y.

61. Figiel A., Michalska A. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes With the Assistance of Vacuum‑Microwaves, International Journal of Molecular Sciences, 2016, Vol. 18, No. 1, P. 71, DOI: 10.3390/ijms18010071.

62. Assis F. R., Morais R. M. S. C., Morais A. M. M. B. Mass Transfer in Osmotic Dehydration of Food Products: Comparison between Mathematical Models, Food Engineering Reviews, 2016, Vol. 8, No. 2, P. 116–133, DOI: 10.1007/s12393‑015‑9123‑1.

63. Mari A., Parisouli D. N., Krokida M. Exploring Osmotic Dehydration for Food Preservation: Methods, Modelling, and Modern Applications, Foods, 2024, Vol. 13, No. 17, P. 2783, DOI: 10.3390/foods13172783.

64. Wang X., Feng H. Pea Protein Isolate and Inulin as Plant‑Based Biomacromolecules for Reduction of Sugar Uptake in Osmotic Dehydration, Journal of Food Process Engineering, 2023, Vol. 46, No. 9, P. 1–10, DOI: 10.1111/jfpe.14417.

65. Wang F., Bi J., Lyu M., Lyu J. Insight Into the Effect of Osmosis Agents on Macro‑ and Micro‑ Texture, Water Distribution, and Thermal Stability of Instant Controlled Pressure Drop Drying Peach Chips, Food Chemistry, 2024, Vol. 440, P. 138236, DOI: 10.1016/j.foodchem.2023.138236.

66. Mohd Fadil I. N., Wan Mokhtar W. M. F., Wan Mohamad W. A. F., Ismail I. Impact of Using Alternative Sweetener as Osmotic Agent on Mass Transfer, Colour and Texture Properties during Dip Dehydration of Apple Slice, Journal of Agrobiotechnology, 2021, Vol. 12, No. 1S, P. 74–82, DOI: 10.37231/jab.2021.12.1S.272.

67. Wang X., Kapoor R., Feng H. Exploring the Effects of Vacuum and Ultrasound Treatments on Calcium Fortification in Osmotically Dehydrated Apple Slices, LWT, 2023, Vol. 187, P. 115386, DOI: 10.1016/j.lwt.2023.115386.

68. Katsouli M., Dermesonlouoglou E., Dimopoulos G. et al. Shelf‑Life Enhancement Applying Pulsed Electric Field and High‑Pressure Treatments Prior to Osmotic Dehydration of Fresh‑Cut Potatoes, Foods, 2024, Vol. 13, No. 1, P. 171, DOI: 10.3390/foods13010171.

69. Rascón M. P., Huerta‑Vera K., Pascual‑Pineda L. A. et al. Osmotic Dehydration Assisted Impregnation of Lactobacillus rhamnosus in Banana and Effect of Water Activity on the Storage Stability of Probiotic in the Freeze‑driedProduct, LWT, 2018, Vol. 92, P. 490–496, DOI: 10.1016/j.lwt.2018.02.074.

70. Kowalska H., Marzec A., Kowalska J. et al. Osmotic Dehydration of Honeoye Strawberries in Solutions Enriched With Natural Bioactive Molecules, LWT, Food Science and Technology, 2017, Vol. 85, P. 500–505, DOI: 10.1016/j.lwt.2017.03.044.

71. Lech K., Michalska A., Wojdyło A. et al. The Influence of Physical Properties of Selected Plant Materials on the Process of Osmotic Dehydration, LWT, 2018, Vol. 91, P. 588–594, DOI: 10.1016/j.lwt.2018.02.012.

72. Macedo L. L., Corrêa J. L. G., Petri Júnior I. et al. Intermittent Microwave Drying and Heated Air Drying of Fresh and Isomaltulose (Palatinose) Impregnated Strawberry, LWT, 2022, Vol. 155, P. 112918, DOI: 10.1016/j.lwt.2021.112918.

73. Sethi K., Kaur M. Effect of Osmotic Dehydration on Physicochemical Properties of Pineapple Using Honey, Sucrose and Honey‑Sucrose Solutions, International Journal of Engineering and Advanced Technology, 2019, Vol. 9, No. 1, P. 6257–6262, DOI: 10.35940/ijeat.A2026.109119.

74. Liu Z.‑L., Staniszewska I., Zielinska D. et al. Combined Hot Air and Microwave‑Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties, Food and Bioprocess Technology, 2020, Vol. 13, No. 10, P. 1848–1856, DOI: 10.1007/s11947‑020‑02507‑9.

75. Asghari A., Zongo P. A., Osse E. F. el al. Review of Osmotic Dehydration: Promising Technologies for Enhancing Products’ Attributes, Opportunities, and Challenges for the Food Industries, Comprehensive Reviews in Food Science and Food Safety, 2024, Vol. 23, No. 3, P. 128, DOI: 10.1111/1541‑4337.13346.

76. Şahin U., Öztürk H. K. Effects of Pulsed Vacuum Osmotic Dehydration (PVOD) on Drying Kinetics of Figs (Ficus carica L),Innovative Food Science & Emerging Technologies, 2016, Vol. 36, P. 104–111, DOI: 10.1016/j.ifset.2016.06.003.

77. Sakooei‑Vayghan R., Peighambardoust S. H., Hesari J., Peressini D. Effects of Osmotic Dehydration (With and Without Sonication) and Pectin‑Based Coating Pretreatments on Functional Properties and Color of Hot‑Air Dried Apricot Cubes, Food Chemistry, 2020, Vol. 311, P. 125978, DOI: 10.1016/j.foodchem.2019.125978.

78. Salehi F., Cheraghi R., Rasouli M. Mass Transfer Analysis and Kinetic Modeling of Ultrasound‑Assisted Osmotic Dehydration of Kiwifruit Slices, Scientific Reports, 2023, Vol. 13, No. 1, P. 11859, DOI: 10.1038/s41598‑023‑39146‑x.

79. Oliveira G., Tylewicz U., Dalla Rosa M. et al. Effects of Pulsed Electric Field‑Assisted Osmotic Dehydration and Edible Coating on the Recovery of Anthocyanins From In Vitro Digested Berries, Foods, 2019, Vol. 8, No. 10, P. 505, DOI: 10.3390/foods8100505.

80. Liu Y., Zeng Y., Wang Q. et al. Drying Characteristics, Microstructure, Glass Transition Temperature, and Quality of Ultrasound‑Strengthened Hot Air Drying on Pear Slices, Journal of Food Processing and Preservation, 2019, Vol. 43, No. 3, P. e13899, DOI: 10.1111/jfpp.13899.

81. Nuñez‑Mancilla Y., Pérez‑Won M., Uribe E. et al. Osmotic Dehydration Under High Hydrostatic Pressure: Effects on Antioxidant Activity, Total Phenolics Compounds, Vitamin C and Col of Strawberry (Fragaria vesca), LWT – Food Science and Technology, 2013, Vol. 52, No. 2, P. 151–156, DOI: 10.1016/j.lwt.2012.02.027.

82. Araya‑Farias M., Macaigne O., Ratti C. On the Development of Osmotically Dehydrated Seabuckthorn Fruits: Pretreatments, Osmotic Dehydration, Postdrying Techniques, and Nutritional Quality, Drying Technology, 2014, Vol. 32, No. 7, P. 813–819, DOI: 10.1080/07373937.2013.866143.

83. Rodriguez A., Soteras M., Campañone L. Review: Effect of the Combined Application of Edible Coatings and Osmotic Dehydration on the Performance of the Process and the Quality of Pear Cubes, International Journal of Food Science & Technology, 2021, Vol. 56, No. 12, P. 6474–6483, DOI: 10.1111/ijfs.15357.

84. Etemadi A., Alizadeh R., Sirousazar M. The Influence of Natural Basil Seed Gum Coats on the Kinetics of Osmotic Dehydration of Apple Rings, Food and Bioprocess Technology, 2020, Vol. 13, No. 9, P. 1505–1515, DOI: 10.1007/s11947‑020‑02492‑z.

85. An K., Tang D., Wu J. et al. Comparison of Pulsed Vacuum and Ultrasound Osmotic Dehydration on Drying of Chinese Ginger (Zingiber officinale Roscoe): Drying Characteristics, Antioxidant Capacity, and Volatile Profiles, Food Science & Nutrition, 2019, Vol. 7, No. 8, P. 2537–2545, DOI: 10.1002/fsn3.1103.

86. George J. M., Senthamizh Selvan T., Rastogi N. K. High‑Pressure‑Assisted Infusion of Bioactive Compounds in Apple Slices, Innovative Food Science & Emerging Technologies, 2016, Vol. 33, P. 100–107, DOI: 10.1016/j.ifset.2015.11.010.

87. Wang B., Li Y., Lv Y. et al. Dehydration – rehydration Mechanism of Vegetables at the Cell‑Wall and Cell‑ Membrane Levels and Future Research Challenges, Critical Reviews in Food Science and Nutrition, 2024, Vol. 64, No. 30, P. 11179–11195, DOI: 10.1080/10408398.2023.2233620.

88. Obajemihi O. I., Cheng J.‑H., Sun D.‑W. Enhancing Moisture Transfer and Quality Attributes of Tomato Slices Through Synergistic Cold Plasma and Osmodehydration Pretreatments During Infrared‑Assisted Pulsed Vacuum Drying, Journal of Food Engineering, 2025, Vol. 387, P. 112335, DOI: 10.1016/j.jfoodeng.2024.112335.

89. Mohammadkhani M., Koocheki A., Mohebbi M. Effect of Lepidium perfoliatum Seed Gum – Oleic Acid Emulsion Coating on Osmotic Dehydration and Subsequent Air‑Drying of Apple Cubes, Progress in Organic Coatings, 2024, Vol. 186, P. 107986, DOI: 10.1016/j.porgcoat.2023.107986.

90. Burak L. Ch., Zavalej A. P., Tekhnika i tekhnologiya pishchevyh proizvodstv, 2024, Vol. 54, No. 2, pp. 342–357, DOI: 10.21603/2074‑9414‑2024‑2‑2510. (In Russ.)

91. Kazub V. T., Koshkarova A. G., Promyshlennye processy i tekhnologii, 2022, Vol. 2, No. 3, pp. 40–46, DOI 10.37816/2713‑0789‑2022‑2‑3(5)‑40‑46. (In Russ.)

92. Thongkong S., Yawootti A., Klangpetch W. et al. A Novel Application of Pulsed Electric Field as a Key Process for Quick‑Cooking Rice Production, Innovative Food Science & Emerging Technologies, 2023, Vol. 90, P. 103494, DOI: 10.1016/j.ifset.2023.103494.

93. Burak L. Ch. Sovremennye metody obrabotki i konservirovaniya plodoovoshchnogo syr’ya (Modern methods of processing and preserving fruit and vegetable raw materials), St. Petersburg: Lan’, 2024, 488 p.

94. Cavalcanti R. N., Balthazar C. F., Margalho L. P. et al. Pulsed Electric Field‑Based Technology for Microbial Inactivation in Milk and Dairy Products, Current Opinion in Food Science, 2023, Vol. 54, P. 101087, DOI: 10.1016/j.cofs.2023.101087.

95. Burak L. Ch., Sapach A. N., Hranenie i pererabotka sel’hozsyr’ya, 2023, No. 2, pp. 44–71, DOI: 10.36107/spfp.2023.418. (In Russ.)

96. Matys A., Witrowa‑Rajchert D., Parniakov O., Wiktor A. Assessment of the Effect of Air Humidity and Temperature on Convective Drying of Apple With Pulsed Electric Field Pretreatment, LWT, 2023, Vol. 188, P. 115455, DOI: 10.1016/j.lwt.2023.115455.

97. Giancaterino M., Werl C., Jaeger H. Evaluation of the Quality and Stability of Freeze‑Dried Fruits and Vegetables Pre‑Treated by Pulsed Electric Fields (PEF), LWT, 2024, Vol. 191, P. 115651, DOI: 10.1016/j.lwt.2023.115651.

98. Thakur R., Gupta V., Dhar P. et al. Ultrasound‑Assisted Extraction of Anthocyanin From Black Rice Bran Using Natural Deep Eutectic Solvents: Optimization, Diffusivity, and Stability, Journal of Food Processing and Preservation, 2022, Vol. 46, No. 3, P. 1–10, DOI: 10.1111/jfpp.16309.

99. Qiu S., Cui F., Wang J. et al. Effects of Ultrasound‑Assisted Immersion Freezing on the Muscle Quality and Myofibrillar Protein Oxidation and Denaturation in Sciaenops ocellatus, Food Chemistry, 2022, Vol. 377, P. 131949, DOI: 10.1016/j.foodchem.2021.131949.

100. Kapoor R., Karabulut G., Mundada V., Feng H. Non‑Thermal Ultrasonic Contact Drying of Pea Protein Isolate Suspensions: Effects on Physicochemical and Functional Properties, International Journal of Biological Macromolecules, 2023, Vol. 253, No. P2, P. 126816, DOI: 10.1016/j.ijbiomac.2023.126816.

101. Çetin N., Sağlam C. Effects of Ultrasound Pretreatment Assisted Drying Methods on Drying Characteristics, Physical and Bioactive Properties of Windfall Apples, Journal of the Science of Food and Agriculture, 2023, Vol. 103, No. 2, P. 534–547, DOI: 10.1002/jsfa.12164.

102. Burak L. Ch., Sapach A. N. Himiya rastitel’nogo syr’ya, 2024, No. 4, pp. 5–23, DOI: 10.14258/jcprm.20240413599. (In Russ.)

103. Salehi F., Inanloodoghouz M. Effects of Gum‑Based Coatings Combined With Ultrasonic Pretreatment Before Drying on Quality of Sour Cherries, Ultrasonics Sonochemistry, 2023, Vol. 100, P. 106633, DOI: 10.1016/j.ultsonch.2023.106633.

104. Karacabey E., Bardakçı M. S., Baltacıoğlu H. Physical Pretreatments to Enhance Purple‑Fleshed Potatoes Drying: Effects of Blanching, Ohmic Heating and Ultrasound Pretreatments on Quality Attributes, Potato Research, 2023, Vol. 66, No. 4, P. 1117–1142, DOI: 10.1007/s11540‑023‑09618‑8.

105. Llavata B., Femenia A., Clemente G., Cárcel J. A. Combined Effect of Airborne Ultrasound and Temperature on the Drying Kinetics and Quality Properties of Kiwifruit (Actinidia deliciosa), Food and Bioprocess Technology, 2024, Vol. 17, No. 2, P. 440–451, DOI: 10.1007/s11947‑023‑03138‑6.

106. De Arruda G. M. P., Brandão S. C. R., Da Silva Júnior E. V. et al. Influence of Ultrasound and Ethanol as a Pretreatment on Papaya Infrared and Convective Drying Characteristics and Quality Parameters, Journal of Food Process Engineering, 2023, Vol. 46, No. 3, P. 1–10, DOI: 10.1111/jfpe.14255.

107. Xu B., Tiliwa E. S., Wei B. et al. Multi‑Frequency Power Ultrasound as a Novel Approach Improves Intermediate‑Wave Infrared Drying Process and Quality Attributes of Pineapple Slices, Ultrasonics Sonochemistry, 2022, Vol. 88, P. 106083, DOI: 10.1016/j.ultsonch.2022.106083.

108. Gavahian M., Nayi P., Masztalerz K. et al. Cold Plasma as an Emerging Energy‑Saving Pretreatment to Enhance Food Drying: Recent Advances, Mechanisms Involved, and Considerations for Industrial Applications, Trends in Food Science & Technology, 2024, Vol. 143, P. 104210, DOI: 10.1016/j.tifs.2023.104210.

109. Harikrishna S., Anil P. P., Shams R., Dash K. K. Cold Plasma as an Emerging Nonthermal Technology for Food Processing: A Comprehensive Review, Journal of Agriculture and Food Research, 2023, Vol. 14, P. 100747, DOI: 10.1016/j.jafr.2023.100747.

110. Burak L. Ch., Sapach A. N., Zavalej A. P., Izvestiya vuzov. Prikladnaya himiya i biotekhnologiya, 2024, vol. 14, No. 2 (49), pp. 173–183, DOI: 10.21285/achb.914. (In Russ.)

111. Boateng I. D. Recent Processing of Fruits and Vegetables Using Emerging Thermal and Non‑Thermal Technologies. A Critical Review of Their Potentialities and Limitations on Bioactives, Structure, and Drying Performance, Critical Reviews in Food Science and Nutrition, 2024, Vol. 64, No. 13, P. 4240–4274, DOI: 10.1080/10408398.2022.2140121.

112. Subrahmanyam K., Gul K., Paridala S. et al. Effect of Cold Plasma Pretreatment on Drying Kinetics and Quality Attributes of Apple Slices in Refractance Window Drying, Innovative Food Science & Emerging Technologies, 2024, Vol. 92, P. 103594, DOI: 10.1016/j.ifset.2024.103594.

113. Bao T., Hao X., Shishir M. R. I. et al. Cold Plasma: An Emerging Pretreatment Technology for the Drying of Jujube Slices, Food Chemistry, 2021, Vol. 337, No. 866, P. 127783, DOI: 10.1016/j.food‑chem.2020.127783.

114. Zhou Y.‑H., Vidyarthi S. K., Zhong C.‑S. et al. Cold Plasma Enhances Drying and Color, Rehydration Ratio and Polyphenols of Wolfberry Via Microstructure and Ultrastructure Alteration, LWT, 2020, Vol. 134, P. 10173, DOI: 10.1016/j.lwt.2020.110173.

115. Burak L. Ch. Nauchnoe obozrenie. Biologicheskie nauki, 2022, No. 4, pp. 63–73, DOI: 10.17513/srbs.1296. (In Russ.)

116. Yucel U., Alpas Y., Bayindirli A. Evaluation of High Pressure Pretreatment for Enhancing the Drying Rates of Carrot, Apple, and Green Bean, Journal of Food Engineering, 2010, Vol. 98, P. 266–272, DOI: 10.1016/j.jfoodeng.2010.01.006.

117. Santos N. C., Almeida R. L. J., Da Silva G. M. et al. Influence of high hydrostatic pressure (HHP) pretreat‑ ment on plum (Prunus salicina) drying: Drying approach, physical, and morpho‑structural properties of the powder and total phenolic compounds, Journal of Food Processing and Preservation, 2022, Vol. 46, P. e16968, DOI: 10.1111/jfpp.16968/

118. Zhang L., Qiao Y., Wang C. et al. Influence of High Hydrostatic Pressure Pretreatment on Properties of Vacuum‑Freeze Dried Strawberry Slices, Food Chemistry, 2020, Vol. 331, P. 127203, DOI: 10.1016/j.foodchem.2020.127203.


Review

For citations:


Burak L.Ch., Sapach A.N., Lukin А.А. Modern methods of pre-processing to improve the quality and nutritional value of dried fruits. a review. Innovations and Food Safety. 2025;(4):8-42. (In Russ.) https://doi.org/10.31677/2311-0651-2025-50-4-8-42

Views: 30

JATS XML


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 2311-0651 (Print)