Современные методы предварительной обработки для повышения качества и пищевой ценности сухофруктов: обзор
https://doi.org/10.31677/2311-0651-2025-50-4-8-42
Аннотация
Традиционные пищевые привычки, включающие употребление ультраобработанных продуктов с низкой калорийностью, высоким содержанием сахара и соли, а также недостаточное потребление свежих фруктов и овощей, отрицательно влияют на здоровье человека. Из-за сезонности сырья и ограниченного доступа к свежим фруктам и овощам данные продукты зачастую присутствуют на рынке в сушеном виде, что обеспечивает их длительный срок хранения. Цель данного исследования – обзор и анализ современных технологий и способов получения качественных сушеных фруктов и закусок на их основе, обладающих высокой пищевой ценностью и приемлемыми органолептическими показателями. В качестве материалов для настоящего обзора использованы результаты научных исследований, опубликованные в период 2015–2025 гг. Научный поиск источников по теме исследования проводили по ключевым словам в библиографических базах Scopus, Web of science, PubMed и Google Scholar. Анализ данных выполнен с их систематизацией, обобщением, промежуточными выводами и общим заключением. Обзор научных публикаций показал, что с целью обеспечения высокой пищевой ценности, максимального сохранения биологически активных соединений, качества и безопасности, длительного срока хранения сушёных фруктов и закусок применяют различные современные нетермические методы предварительной обработки перед сушкой, такие как импульсное электрическое поле, ультразвуковая обработка, высокогидростатическая обработка, импульсный свет и холодная плазма. Вакуумная пропитка, осмотическое обезвоживание перед сушкой способствуют повышению пищевой ценности сухофруктов, а также энергоэффектвности процесса сушки. Важный и перспективный подход к производству сушеных закусок предполагает вовлечение побочных продуктов пищевой промышленности, включая отходы фруктов. Эта стратегия не только решает проблемы пищевых отходов, но и создает закуски или ингредиенты, богатые питательными веществами. Дальнейшие исследования должны быть направлены на установление оптимальных режимов обработки сырья с целью повышения энергоэффективности процесса сушки плодоовощного сырья при производстве закусок с максимальным сохранением пищевой ценности, улучшением органолептических показателей качества и повышением общей приемлемости для потребителей.
Об авторах
Л. Ч. БуракРоссия
Л. Ч. Бурак, доктор философии в области пищевых наук
А. Н. Сапач
Россия
А. Н. Сапач, аспирант
А. А. Лукин
Россия
А. А. Лукин, кандидат технических наук, доцент
Список литературы
1. Бурак Л. Ч. Влияние современных способов обработки и стерилизации на качество плодо‑ овощного сырья и соковой продукции: монография. – М.: ИНФРА‑М, 2025. – 236 с. – DOI: 10.12737/0.12737/2154991. – ISBN: 978‑5‑16‑020036‑1.
2. Бурак Л. Ч. Ультрапереработанные продукты питания: методы снижения их калорийности и повы‑ шения пищевой ценности (Обзор предметного поля) // Health, Food & Biotechnology. – 2025. – Т. 7, № (2). – С. 41–75. – DOI: 10.36107/hfb.2025.i2.s258.
3. Fruits and Vegetables for Healthy Diets: Priorities for Food System Research and Action / J. Harris, B. de Steenhuijsen Piters, S. McMullin [et al.] // Science and Innovations for Food Systems Transformation / Eds. J. von Braun, K. Afsana, L. O. Fresco, M. H. A. Hassan. – Cham, Switzerland: Springer International Publishing, 2023. – P. 87–104. – DOI: 10.1007/978‑3‑031‑15703‑5_6.
4. Functional Dehydrated Foods for Health Preservation / R. M. S. C. Morais, A. M. M. B. Morais, I. Dammak // Journal of Food Quality. – 2018. – Vol. 3. – P. 1–29. – DOI: 10.1155/2018/1739636.
5. The Effect of Storage Time and Temperature on Quality Changes in Freeze‑Dried Snacks Obtained With Fruit Pomace and Pectin Powders as a Sustainable Approach for New Product Development / M. Karwacka, A. Ciurzyńska, S. Galus, M. Janowicz // Sustainability. – 2024. – Vol. 16, No. 11. – P. 4736. – DOI: 10.3390/su16114736.
6. Sustainable Approach for Development Dried Snack Based on Actinidia deliciosa Kiwifruit / M. Nowacka, C. Mannozzi, M. Dalla Rosa, U. Tylewicz. // Applied Sciences. – 2023. – Vol. 13, No. 4. – P. 2189. – DOI: 10.3390/app13042189.
7. Selected Dried Fruits as a Source of Nutrients / I. Rybicka, J. Kiewlicz, P. Ł. Kowalczewski, A. Gliszczyńska‑Świgło // European Food Research and Technology. – 2021. – Vol. 247, No. 10. – P. 2409– 2419. – DOI: 10.1007/s00217‑021‑03802‑1.
8. Бурак Л. Ч. Современные методы бланширования и их влияние на процесс сушки фруктов и овощей // Вестник МГТУ. – 2025. – Т. 28, № 2. – С. 273–295. – DOI: 10.21443/1560‑9278‑2025‑28‑2‑273‑295.
9. Nutrient Density, Added Sugar, and Fiber Content of Commercially Available Fruit Snacks in the United States From 2017 to 2022 / H. Fu, C. H. Lee, A. A. Nolden, A. J. Kinchla // Nutrients. – 2024. – Vol. 16, No. 2. – P. 292. – DOI: 10.3390/nu16020292.
10. Бурак Л. Ч. Использование современных технологий обработки для увеличения срока хранения фруктов и овощей. Обзор предметного поля // Ползуновский вестник. – 2024. – № 1. – С. 99–119. – DOI: 10.25712/ASTU.2072‑8921.2024.01.013.
11. Омелько В. А. Использование сухофруктов в рационе питания с целью профилактики онкологической патологии // Современные проблемы гигиены, радиационной и экологической медицины. – 2023. – Т. 13, № S1. – С. 128–133.
12. Макаренкова О. Г., Шевякова Л. В., Бессонов В. В. Сухофрукты – природный источник микроэлементов // Вопросы питания. – 2015. – Т. 84, № S5. – С. 51.
13. Emerging Technologies in Dried Fruit Snacks: Nutritional Enrichment and Sustainable Production / M. Nowacka, H. Kowalska, U. Tylewicz [et al.] // Compr Rev Food Sci Food Saf. – 2025. – Vol. 24 (4). – P. e70225. – DOI: 10.1111/1541‑4337.70225.
14. Development of Drying and Roasting Processes for the Production of Plant‑Based Pro‑Healthy Snacks in the Light of Nutritional Trends and Sustainable Techniques / M. Chobot, M. Kozłowska, A. Ignaczak,H. Kowalska // Trends in Food Science & Technology. – 2024. – Vol. 149 (18). – P. 104553. – DOI: 10.1016/j.tifs.2024.104553.
15. Eating Habits and Sustainable Food Production in the Development of Innovative «Healthy Snacks» / A. Ciurzyńska, P. Cieśluk, M. Barwińska [et al.] // Sustainability. – 2019. – Vol. 11, No. 10. – P. 2800. – DOI: 10.3390/su11102800.
16. Prebiotic-Alginate Edible Coating on Fresh‑Cut Apple as a New Carrier for Probiotic Lactobacilli and Bif idobacteria / M. V. Alvarez, M. F. Bambace, G. Quintana [et al.] // LWT. – 2021. – Vol. 137. – P. 110483. – DOI: 10.1016/j.lwt.2020.110483.
17. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review / M. Radojčin, I. Pavkov, D. Bursać Kovačević [et al.] // Processes. – 2021. – Vol. 9, No. 1. – P. 132. – DOI: 10.3390/pr9010132.
18. Sustainable Development of Apple Snack Formulated With Blueberry Juice and Trehalose / J. M. Castagnini, S. Tappi, U. Tylewicz [et al.] // Sustainability. – 2021. – Vol. 13, No. 16. – P. 9204. – DOI: 10.3390/su13169204.
19. Apple Slices Enriched With Aloe vera by Vacuum Impregnation / A. Derossi, I. Ricci, A. G. Fiore Ricci, C. Severini // Italian Journal of Food Science. – 2018. – Vol. 30, No. 2. – P. 256–267. – DOI: 10.14674/IJFS‑939.
20. Effect of Ultrasound on Mass Transfer During Vacuum Impregnation and Selected Quality Parameters of Products: A Case Study of Carrots / E. Radziejewska‑Kubzdela, J. Szadzińska, R. Biegańska‑Marecik [et al.] // Ultrasonics Sonochemistry. – 2023. – Vol. 99, No. 9. – P. 106592. – DOI: 10.1016/j.ultsonch.2023.106592.
21. Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying / M. Kaveh, M. Nowacka, E. Khalife [et al.] // Processes. – 2023. – Vol. 11, No. 4. – P. 978. – DOI: 10.3390/pr11040978.
22. Hot Air‑Assisted Radiofrequency Drying of Avocado: Drying Behavior and the Associated Effect on the Characteristics of Avocado Powder / H. N. Özbek, B. Koç, D. Koçak Yanık, F. Göğüş // Journal of Food Process Engineering. – 2022. – Vol. 45, No. 9. – P. 1–11. – DOI: 10.1111/jfpe.14094.
23. Hybrid Microwave‑Hot Air Drying of the Osmotically Treated Carrots / A. U. D. Souza, J. L. G. Corrêa, D. H. Tanikawa [et al.] // LWT. – 2022. – Vol. 156. – P. 113046. – DOI: 10.1016/j.lwt.2021.113046.
24. Nutritional Value, Physical Properties, and Sensory Quality of Sugar‑Free Cereal Bars Fortified With Grape and Apple Pomace / A. Blicharz‑Kania, K. Vasiukov, A. Sagan [et al.] // Applied Sciences. – 2023. – Vol. 13, No. 18. – P. 10531. – DOI: 10.3390/app131810531.
25. Opportunities in Valorisation of Industrial Food Waste Into Extruded Snack Products – A Review / A. Raleng, N. G. J. Singh, P. Chavan, A. K. Attkan // Indian Journal of Agricultural Sciences. – 2022. – Vol. 92, No. 10. – P. 1167–1174. – DOI: 10.56093/ijas.v92i10.113487.
26. Бурак Л. Ч., Егорова З. Е. Валоризация отходов переработки растительного сырья как путь достижения целей устойчивого развития // Sciences of Europe. – 2024. – № 152. – С. 13–21. – DOI: 10.5281/zenodo.14063716.
27. Development of Healthy and Clean‑Label Crackers Incorporating Apple and Carrot Pomace Flours / S. Salari, T. Castigliego, J. Ferreira [et al.] // Sustainability. – 2024. – Vol. 16, No. 14. – P. 5995. – DOI: 10.3390/su16145995.
28. Recent advances in vacuum impregnation of fruits and vegetables processing: A concise review / B. R. Vinod, R. Asrey, S. Sethi [et al.] // Heliyon. – 2024. – Vol. 10. – P. e28023. – DOI: 10.1016/j.heliyon.2024.e28023.
29. Saleena P., Jayashree E., Anees K. A. Comprehensive Review on Vacuum Impregnation: Mechanism, Applications and Prospects // Food and Bioprocess Technology. – 2024. – Vol. 17, No. 6. – P. 1434–1447. – DOI: 10.1007/s11947‑023‑03185‑z.
30. Vacuum Impregnation Process and Its Potential in Modifying Sensory, Physicochemical and Nutritive Characteristics of Food Products / A. S. Panayampadan, M. S. Alam, R. Aslam, J. Kaur // Food Engineering Reviews. – 2022. – Vol. 14, No. 2. – P. 229–256. – DOI: 10.1007/s12393‑022‑09312‑4.
31. Optimization and Modeling of Vacuum Impregnation of Pineapple Rings and Comparison With Osmotic Dehydration / B. Thomas, S. K. Pulissery, K. B. Sankalpa [et al.] // Journal of Food Science. – 2024. – Vol. 89, No. 1. – P. 494–512. – DOI: 10.1111/1750‑3841.16875.
32. Assessment of Ultrasound‑Assisted Vacuum Impregnation as a Method for Modifying Cranberries’ Quality / D. Mierzwa, J. Szadzińska, B. Gapiński [et al.] // Ultrasonics Sonochemistry. – 2022. – Vol. 89. – P. 106117. – DOI: 10.1016/j.ultsonch.2022.106117.
33. Effectiveness of Cranberry (Vaccinium macrocarpon, cv. Pilgrim) Vacuum Impregnation: The Effect of Sample Pretreatment, Pressure, and Processing Time / D. Mierzwa, J. Szadzińska, E. Radziejewska‑ Kubzdela [et al.] // Food and Bioproducts Processing. – 2022. – Vol. 134. – P. 223234. – DOI: 10.1016/j.fbp.2022.06.001.
34. Effects of Optimized Osmotic Vacuum Impregnation on Quality Properties of Red Abalone (Haliotis rufescens) Drying / S. Pizarro‑Oteíza, C. Giovagnoli‑Vicuña, V. Briones‑Labarca, F. Salazar // Journal of Food Measurement and Characterization. – 2023. – Vol. 17, No. 5. – P. 4520–4529. – DOI: 10.1007/s11694‑023‑01987‑5.
35. Pulsed Vacuum Osmotic Dehydration on Physiological Compound Enrichment of Model Food / K. Sittisuanjik, P. Chottanom, A. Moongngarm, S. Deeseenthum // Journal of Sustainability Science and Management. – 2021. – Vol. 16, No. 2. – P. 38–52. – DOI: 10.46754/jssm.2021.02.006.
36. Wang X., Kahraman O., Feng H. Impregnation‑Mediated Natural Fortification of Sliced Apples With Hypertonic Fruit Juices: Mass Transfer Kinetics and Product Quality // 2021 ASABE Annual International Virtual Meeting (July 12–16, 2021). – 2021. – Pap. 2100758. – DOI: 10.13031/aim.202100758.
37. From Biorefinery of Microalgal Biomass to Vacuum Impregnation of Fruit. A Multidisciplinary Strategy to Develop Innovative Food With Increased Nutritional Properties / A. Derossi, M. Francavilla, M. Monteleone [et al.] // Innovative Food Science & Emerging Technologies. – 2021. – Vol. 70. – P. 102677. – DOI: 10.1016/j.ifset.2021.102677.
38. Fortified Apple (Malus spp., var. Fuji) Snacks by Vacuum Impregnation of Calcium Lactate and Convective Drying / F. R. Assis, L. G. G. Rodrigues, G. Tribuzi [et al.] // LWT. – 2019. – Vol. 113. – P. 108298. – DOI: 10.1016/j.lwt.2019.108298.
39. Probiotic Survival and In Vitro Digestion of L. salivarius Spp. Salivarius Encapsulated by High Homogenization Pressures and Incorporated Into a Fruit Matrix / E. Betoret, N. Betoret, L. Calabuig‑ Jiménez [et al.] // LWT. – 2019. – Vol. 111. – P. 883888. – DOI: 10.1016/j.lwt.2019.05.088.
40. Comparison of Vacuum Impregnation and Soaking Techniques for Addition of the Probiotic Lactobacillus acidophilus to Minimally Processed Melon / P. M. de Oliveira, A. M. Ramos, E. M. F. Martins [et al.] // International Journal of Food Science & Technology. – 2017. – Vol. 52, No. 12. – P. 2547–2554. – DOI: 10.1111/ijfs.13540.
41. González-Pérez J. E., Ramírez-Corona N., López-Malo A. Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non‑Thermal Methods // Food Engineering Reviews. – 2021. – Vol. 13, No. 2. – P. 344374. – DOI: 10.1007/s12393‑020‑09276‑3.
42. Combined Use of Blanching and Vacuum Impregnation With Trehalose and Green Tea Extract as Pre‑ Treatment to Improve the Quality and Stability of Frozen Carrots / V. Santarelli, L. Neri, R. Moscetti [et al.] // Food and Bioprocess Technology. – 2021. – Vol. 14, No. 7. – P. 1326–1340. – DOI: 10.1007/s11947‑021‑02637‑8.
43. Yılmaz F. M., Ersus Bilek S. Natural Colorant Enrichment of Apple Tissue With Black Carrot Concentrate Using Vacuum Impregnation // International Journal of Food Science & Technology. – 2017. – Vol. 52, No. 6. – P. 15081516. – DOI: 10.1111/ijfs.13426.
44. Vacuum Impregnation of β‑Carotene and Lutein in Minimally Processed Fruit Salad / M. Santana Moreira, D. de Almeida Paula, E. M. Furtado Martins [et al.] // Journal of Food Processing and Preservation. – 2018. – Vol. 42, No. 3. – P. e13545. – DOI: 10.1111/jfpp.13545.
45. Demir E., Dymek K., Galindo F. G. Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance // Food and Bioprocess Technology. – 2018. – Vol. 11, No. 4. – P. 809–817. – DOI: 10.1007/s11947‑017‑2044‑7.
46. Nyoto I. C., Gómez Galindo F. A. Comparison Between Pulsed Electric Field and Moderate Electric Field for Their Effectiveness in Improving the Freezing Tolerance of Rocket Leaves // Biochemistry and Biophysics Reports. – 2023. – Vol. 35. – P.101515. – DOI: 10.1016/j.bbrep.2023.101515.
47. Effect of Pulsed Electric Field Coupled With Vacuum Infusion on Quality Parameters of Frozen/Thawed Strawberries / E. Velickova, U. Tylewicz, M. Dalla Rosa [et al.] // Journal of Food Engineering. – 2018. – Vol. 233. – P 57–64. – DOI: 10.1016/j.jfoodeng.2018.03.030.
48. Iron Fortification of Whole Potato Using Vacuum Impregnation Technique With a Pulsed Electric Field Pretreatment / M. Mashkour, Y. Maghsoudlou, M. Kashaninejad, M. Aalami // Potato Research. – 2018. – Vol. 61, No. 4. – P. 375389. – DOI: 10.1007/s11540‑018‑9392‑1.
49. Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe vera Juices / M. Trusinska, F. Drudi, K. Rybak [et al.] // Foods. – 2023. – Vol. 12, No. 21. – P. 3957. – DOI: 10.3390/foods12213957.
50. Vacuum Impregnation of Chitosan‑Based Edible Coating in Minimally Processed Pumpkin / A. S. de Soares, A. M. Ramos, É. N. R. Vieira [et al.] // International Journal of Food Science & Technology. – 2018. – Vol. 53, No. 9. – P. 2229–2238. – DOI: 10.1111/ijfs.13811.
51. Senturk Parreidt T., Müller K., Schmid M. Alginate‑Based Edible Films and Coatings for Food Packaging Applications // Foods. – 2018. – Vol. 7, No. 10. – P. 170. – DOI: 10.3390/foods7100170.
52. The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum‑Microwave Drying of Pumpkin / K. Lech, A. Figiel, A. Michalska [et al.] // Journal of Food Quality. – 2018. – P. 1–11. – DOI: 10.1155/2018/7293932. – ISBN: 1745‑4557.
53. Мачнева И. А., Дрофичева Н. В., Причко Т. Г. Научное обоснование применения методов дегидратации плодово‑ягодного сырья при производстве сухофруктов // Плодоводство и виноградарство Юга России. – 2021. – № 70 (4). – С. 269–296. – DOI: 10.30679/2219‑5335‑2021‑4‑70‑269‑296.
54. Edible Coatings as Osmotic Dehydration Pretreatment in Nutrient‑Enhanced Fruit or Vegetable Snacks Development: A Review / H. Kowalska, A. Marzec, E. Domian [et al.] // Comprehensive Reviews in Food Science and Food Safety. – 2021. – Vol. 20, No. 6. – P. 5641–5674. – DOI: 10.1111/1541‑4337.12837.
55. Ahmed I., Qazi I. M., Jamal S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 34. – P. 29–43. – DOI: 10.1016/j.ifset.2016.01.003.
56. Çağlayan D., Mazı B. I. Effects of Ultrasound‑Assisted Osmotic Dehydration as a Pretreatment and Finish Drying Methods on the Quality of Pumpkin Slices // Journal of Food Processing and Preservation. – 2018. – Vol. 42, No. 9. – P. e13679. – DOI: 10.1111/jfpp.13679.
57. Бурак Л. Ч., Сапач А. Н. Биологически активные вещества бузины: свойства, методы извлечения и сохранения // Пищевые системы. – 2023. – Т. 6, № 1. – С. 80–94. – DOI: 10.21323/2618‑9771‑2023‑6‑1‑80‑94.
58. Saleena P., Jayashree E., Anees K. Recent Developments in Osmotic Dehydration of Fruits and Vegetables: A Review // Pharma Innovation. – 2022. – Vol. 11, No. 2. – P. 40–50.
59. The Effect of Filtration on Physical and Chemical Properties of Osmo‑Dehydrated Material / K. Masztalerz, A. Figiel, A. Michalska‑Ciechanowska [et al.] // Molecules. – 2020. – Vol. 25, No. 22. – P. 5412. – DOI: 10.3390/molecules25225412.
60. Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits / P. Nowicka, A. Wojdyło, K. Lech, A. Figiel // Food and Bioprocess Technology. – 2015. – Vol. 8, No. 4. – P. 824836. – DOI: 10.1007/s11947‑014‑1447‑y.
61. Figiel A., Michalska A. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes With the Assistance of Vacuum‑Microwaves // International Journal of Molecular Sciences. – 2016. – Vol. 18, No. 1. – P. 71. – DOI: 10.3390/ijms18010071.
62. Assis F. R., Morais R. M. S. C., Morais A. M. M. B. Mass Transfer in Osmotic Dehydration of Food Products: Comparison between Mathematical Models // Food Engineering Reviews. – 2016. – Vol. 8, No. 2. – P. 116–133. – DOI: 10.1007/s12393‑015‑9123‑1.
63. Mari A., Parisouli D. N., Krokida M. Exploring Osmotic Dehydration for Food Preservation: Methods, Modelling, and Modern Applications // Foods. – 2024. – Vol. 13, No. 17. – P. 2783. – DOI: 10.3390/foods13172783.
64. Wang X., Feng H. Pea Protein Isolate and Inulin as Plant‑Based Biomacromolecules for Reduction of Sugar Uptake in Osmotic Dehydration // Journal of Food Process Engineering. – 2023. – Vol. 46, No. 9. – P. 1–10. – DOI: 10.1111/jfpe.14417.
65. Insight Into the Effect of Osmosis Agents on Macro‑ and Micro‑ Texture, Water Distribution, and Thermal Stability of Instant Controlled Pressure Drop Drying Peach Chips / F. Wang, J. Bi, M. Lyu, J. Lyu // Food Chemistry. – 2024. – Vol. 440. – P. 138236. – DOI: 10.1016/j.foodchem.2023.138236.
66. Impact of Using Alternative Sweetener as Osmotic Agent on Mass Transfer, Colour and Texture Properties during Dip Dehydration of Apple Slice / I. N. Mohd Fadil, W. M. F. Wan Mokhtar, W. A. F. Wan Mohamad, I. Ismail // Journal of Agrobiotechnology. – 2021. – Vol. 12, No. 1S. – P. 74–82. – DOI: 10.37231/jab.2021.12.1S.272.
67. Wang X., Kapoor R., Feng H. Exploring the Effects of Vacuum and Ultrasound Treatments on Calcium Fortification in Osmotically Dehydrated Apple Slices // LWT. – 2023. – Vol. 187. – P. 115386. – DOI: 10.1016/j.lwt.2023.115386.
68. Shelf-Life Enhancement Applying Pulsed Electric Field and High‑Pressure Treatments Prior to Osmotic Dehydration of Fresh‑Cut Potatoes / M. Katsouli, E. Dermesonlouoglou, G. Dimopoulos [et al.] // Foods. – 2024. – Vol. 13, No. 1. – P. 171. – DOI: 10.3390/foods13010171.
69. Osmotic Dehydration Assisted Impregnation of Lactobacillus rhamnosus in Banana and Effect of Water Activity on the Storage Stability of Probiotic in the Freeze‑driedProduct / M. P. Rascón, K. Huerta‑Vera, L. A. Pascual‑Pineda [et al.] // LWT. – 2018. – Vol. 92. – P. 490–496. – DOI: 10.1016/j.lwt.2018.02.074.
70. Osmotic Dehydration of Honeoye Strawberries in Solutions Enriched With Natural Bioactive Molecules / H. Kowalska, A. Marzec, J. Kowalska [et al.] // LWT. – Food Science and Technology. – 2017. – Vol. 85. – P. 500–505. – DOI: 10.1016/j.lwt.2017.03.044.
71. The Influence of Physical Properties of Selected Plant Materials on the Process of Osmotic Dehydration / K. Lech, A. Michalska, A. Wojdyło [et al.] // LWT. – 2018. – Vol. 91. – P. 588–594. – DOI: 10.1016/j.lwt.2018.02.012.
72. Intermittent Microwave Drying and Heated Air Drying of Fresh and Isomaltulose (Palatinose) Impregnated Strawberry / L. L. Macedo, J. L. G. Corrêa, I. Petri Júnior [et al.] // LWT. – 2022. – Vol. 155. – P. 112918. – DOI: 10.1016/j.lwt.2021.112918.
73. Sethi K., Kaur M. Effect of Osmotic Dehydration on Physicochemical Properties of Pineapple Using Honey, Sucrose and Honey‑Sucrose Solutions // International Journal of Engineering and Advanced Technology. – 2019. – Vol. 9, No. 1. – P. 6257–6262. – DOI: 10.35940/ijeat.A2026.109119.
74. Combined Hot Air and Microwave‑Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties / Z.‑L. Liu, I. Staniszewska, D. Zielinska [et al.] // Food and Bioprocess Technology. – 2020. – Vol. 13, No. 10. – P. 1848–1856. – DOI: 10.1007/s11947‑020‑02507‑9.
75. Review of Osmotic Dehydration: Promising Technologies for Enhancing Products’ Attributes, Opportunities, and Challenges for the Food Industries / A. Asghari, P. A. Zongo, E. F. Osse [el al.] // Comprehensive Reviews in Food Science and Food Safety. – 2024. – Vol. 23, No. 3. – P. 128. – DOI: 10.1111/1541‑4337.13346.
76. Şahin U., Öztürk H. K. Effects of Pulsed Vacuum Osmotic Dehydration (PVOD) on Drying Kinetics of Figs (Ficus carica L) // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 36. – P. 104–111. – DOI: 10.1016/j.ifset.2016.06.003.
77. Effects of Osmotic Dehydration (With and Without Sonication) and Pectin‑Based Coating Pretreatments on Functional Properties and Color of Hot‑Air Dried Apricot Cubes / R. Sakooei‑Vayghan, S. H. Peighambardoust, J. Hesari, D. Peressini // Food Chemistry. – 2020. – Vol. 311. – P. 125978. – DOI: 10.1016/j.foodchem.2019.125978.
78. Salehi F., Cheraghi R., Rasouli M. Mass Transfer Analysis and Kinetic Modeling of Ultrasound‑Assisted Osmotic Dehydration of Kiwifruit Slices // Scientific Reports. – 2023. – Vol. 13, No. 1. – P. 11859. – DOI: 10.1038/s41598‑023‑39146‑x.
79. Effects of Pulsed Electric Field‑Assisted Osmotic Dehydration and Edible Coating on the Recovery of Anthocyanins From In Vitro Digested Berries / G. Oliveira, U. Tylewicz, M. Dalla Rosa [et al.] // Foods. – 2019. – Vol. 8, No. 10. – P. 505. – DOI: 10.3390/foods8100505.
80. Drying Characteristics, Microstructure, Glass Transition Temperature, and Quality of Ultrasound‑ Strengthened Hot Air Drying on Pear Slices / Y. Liu, Y. Zeng, Q. Wang [et al.] // Journal of Food Processing and Preservation. – 2019. – Vol. 43, No. 3. – P. e13899. – DOI: 10.1111/jfpp.13899.
81. Osmotic Dehydration Under High Hydrostatic Pressure: Effects on Antioxidant Activity, Total Phenolics Compounds, Vitamin C and Col of Strawberry (Fragaria vesca) / Y. Nuñez‑Mancilla, M. Prez‑Won, E. Uribe [et al.] // LWT. – Food Science and Technology. – 2013. – Vol. 52, No. 2. – P. 151–156. – DOI: 10.1016/j.lwt.2012.02.027.
82. Araya-Farias M., Macaigne O., Ratti C. On the Development of Osmotically Dehydrated Seabuckthorn Fruits: Pretreatments, Osmotic Dehydration, Postdrying Techniques, and Nutritional Quality // Drying Technology. – 2014. – Vol. 32, No. 7. – P. 813–819. – DOI: 10.1080/07373937.2013.866143.
83. Rodriguez A., Soteras M., Campañone L. Review: Effect of the Combined Application of Edible Coatings and Osmotic Dehydration on the Performance of the Process and the Quality of Pear Cubes // International Journal of Food Science & Technology. – 2021. – Vol. 56, No. 12. – P. 6474–6483. – DOI: 10.1111/ijfs.15357.
84. Etemadi A., Alizadeh R., Sirousazar M. The Influence of Natural Basil Seed Gum Coats on the Kinetics of Osmotic Dehydration of Apple Rings // Food and Bioprocess Technology. – 2020. – Vol. 13, No. 9. – P. 1505–1515. – DOI: 10.1007/s11947‑020‑02492‑z.
85. Comparison of Pulsed Vacuum and Ultrasound Osmotic Dehydration on Drying of Chinese Ginger (Zingiber officinale Roscoe): Drying Characteristics, Antioxidant Capacity, and Volatile Profiles / K. An, D. Tang, J. Wu [et al.] // Food Science & Nutrition. – 2019. – Vol. 7, No. 8. – P. 2537–2545. – DOI: 10.1002/fsn3.1103.
86. George J. M., Senthamizh Selvan T., Rastogi N. K. High‑Pressure‑Assisted Infusion of Bioactive Compounds in Apple Slices // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 33. – P. 100–107. – DOI: 10.1016/j.ifset.2015.11.010.
87. Dehydration – rehydration Mechanism of Vegetables at the Cell‑Wall and Cell‑Membrane Levels and Future Research Challenges / B. Wang, Y. Li, Y. Lv [et al.] // Critical Reviews in Food Science and Nutrition. – 2024. – Vol. 64, No. 30. – P. 11179–11195. – DOI: 10.1080/10408398.2023.2233620.
88. Obajemihi O. I., Cheng J.-H., Sun D.-W. Enhancing Moisture Transfer and Quality Attributes of Tomato Slices Through Synergistic Cold Plasma and Osmodehydration Pretreatments During Infrared‑Assisted Pulsed Vacuum Drying // Journal of Food Engineering. – 2025. – Vol. 387. – P. 112335. – DOI: 10.1016/j.jfoodeng.2024.112335.
89. Mohammadkhani M., Koocheki A., Mohebbi M. Effect of Lepidium perfoliatum Seed Gum – Oleic Acid Emulsion Coating on Osmotic Dehydration and Subsequent Air‑Drying of Apple Cubes // Progress in Organic Coatings. – 2024. – Vol. 186. – P. 107986. – DOI: 10.1016/j.porgcoat.2023.107986.
90. Бурак Л. Ч., Завалей А. П. Эффективность комбинированного воздействия ультразвука и микроволн при обработке пищевых продуктов. Обзор // Техника и технология пищевых производств. – 2024. – Т. 54, № 2. – С. 342–357. – DOI: 10.21603/2074‑9414‑2024‑2‑2510.
91. Казуб В. Т., Кошкарова А. Г. Применение импульсного электрического поля для интенсификации процессов экстрагирования // Промышленные процессы и технологии. – 2022. – Т. 2, № 3. – С. 40–46. – DOI 10.37816/2713‑0789‑2022‑2‑3(5)‑40‑46.
92. A Novel Application of Pulsed Electric Field as a Key Process for Quick‑Cooking Rice Production / S. Thongkong, A. Yawootti, W. Klangpetch [et al.] // Innovative Food Science & Emerging Technologies. – 2023. – Vol. 90. – P. 103494. – DOI: 10.1016/j.ifset.2023.103494.
93. Бурак Л. Ч. Современные методы обработки и консервирования плодоовощного сырья: учебное пособие. – СПб.: Лань, 2024. – 488 с. – ISBN 978‑5‑ 507‑48119‑4.
94. Pulsed Electric Field‑Based Technology for Microbial Inactivation in Milk and Dairy Products / R. N. Cavalcanti, C. F. Balthazar, L. P. Margalho [et al.] // Current Opinion in Food Science. – 2023. – Vol. 54. – P. 101087. – DOI: 10.1016/j.cofs.2023.101087.
95. Бурак Л. Ч., Сапач А. Н. Влияние предварительной обработки импульсным электрическим полем на процесс сушки: обзор предметного поля // Хранение и переработка сельхозсырья. – 2023. – № 2. – С. 44–71. – DOI: 10.36107/spfp.2023.418.
96. Assessment of the Effect of Air Humidity and Temperature on Convective Drying of Apple With Pulsed Electric Field Pretreatment / A. Matys, D. Witrowa‑Rajchert, O. Parniakov, A. Wiktor // LWT. – 2023. – Vol. 188. – P. 115455. – DOI: 10.1016/j.lwt.2023.115455.
97. Giancaterino M., Werl C., Jaeger H. Evaluation of the Quality and Stability of Freeze‑Dried Fruits and Vegetables Pre‑Treated by Pulsed Electric Fields (PEF) // LWT. – 2024. – Vol. 191. – P. 115651. – DOI: 10.1016/j.lwt.2023.115651.
98. Ultrasound-Assisted Extraction of Anthocyanin From Black Rice Bran Using Natural Deep Eutectic Solvents: Optimization, Diffusivity, and Stability / R. Thakur, V. Gupta, P. Dhar [et al.] // Journal of Food Processing and Preservation. – 2022. – Vol. 46, No. 3. – P. 1–10. – DOI: 10.1111/jfpp.16309.
99. Effects of Ultrasound‑Assisted Immersion Freezing on the Muscle Quality and Myofibrillar Protein Oxidation and Denaturation in Sciaenops ocellatus / S. Qiu, F. Cui, J. Wang [et al.] // Food Chemistry. – 2022. – Vol. 377. – P. 131949. – DOI: 10.1016/j.foodchem.2021.131949.
100. Non-Thermal Ultrasonic Contact Drying of Pea Protein Isolate Suspensions: Effects on Physicochemical and Functional Properties / R. Kapoor, G. Karabulut, V. Mundada, H. Feng // International Journal of Biological Macromolecules. – 2023. – Vol. 253, No. P2. – P. 126816. – DOI: 10.1016/j.ijbiomac.2023.126816.
101. Çetin N., Sağlam C. Effects of Ultrasound Pretreatment Assisted Drying Methods on Drying Characteristics, Physical and Bioactive Properties of Windfall Apples // Journal of the Science of Food and Agriculture. – 2023. – Vol. 103, No. 2. – P. 534–547. – DOI: 10.1002/jsfa.12164.
102. Бурак Л. Ч., Сапач А. Н. Влияние действия ультразвука на функциональные свойства растительных белков. Обзор предметного поля // Химия растительного сырья. – 2024. – № 4. – С. 5–23. – DOI: 10.14258/jcprm.20240413599.
103. Salehi F., Inanloodoghouz M. Effects of Gum‑Based Coatings Combined With Ultrasonic Pretreatment Before Drying on Quality of Sour Cherries // Ultrasonics Sonochemistry. – 2023. – Vol. 100. – P. 106633. – DOI: 10.1016/j.ultsonch.2023.106633.
104. Karacabey E., Bardakçı M. S., Baltacıoğlu H. Physical Pretreatments to Enhance Purple‑Fleshed Potatoes Drying: Effects of Blanching, Ohmic Heating and Ultrasound Pretreatments on Quality Attributes // Potato Research. – 2023. – Vol. 66, No. 4. – P. 1117–1142. – DOI: 10.1007/s11540‑023‑09618‑8.
105. Combined Effect of Airborne Ultrasound and Temperature on the Drying Kinetics and Quality Properties of Kiwifruit (Actinidia deliciosa) / B. Llavata, A. Femenia, G. Clemente, J.A. Cárcel // Food and Bioprocess Technology. – 2024. – Vol. 17, No. 2. – P. 440–451. – DOI: 10.1007/s11947‑023‑03138‑6.
106. Influence of Ultrasound and Ethanol as a Pretreatment on Papaya Infrared and Convective Drying Characteristics and Quality Parameters / G. M. P. de Arruda, S. C. R. Brandão, E. V. da Silva Júnior [et al.] // Journal of Food Process Engineering. – 2023. – Vol. 46, No. 3. – P. 1–10. – DOI: 10.1111/jfpe.14255.
107. Multi-Frequency Power Ultrasound as a Novel Approach Improves Intermediate‑Wave Infrared Drying Process and Quality Attributes of Pineapple Slices / B. Xu, E. S. Tiliwa, B. Wei [et al.] // Ultrasonics Sonochemistry. – 2022. – Vol. 88. – P. 106083. – DOI: 10.1016/j.ultsonch.2022.106083.
108. Cold Plasma as an Emerging Energy‑Saving Pretreatment to Enhance Food Drying: Recent Advances, Mechanisms Involved, and Considerations for Industrial Applications / M. Gavahian, P. Nayi, K. Masztalerz [et al.] // Trends in Food Science & Technology. – 2024. – Vol. 143. – P. 104210. – DOI: 10.1016/j.tifs.2023.104210.
109. Cold Plasma as an Emerging Nonthermal Technology for Food Processing: A Comprehensive Review / S. Harikrishna, P. P. Anil, R. Shams, K. K. Dash // Journal of Agriculture and Food Research. – 2023. – Vol. 14. – P. 100747. – DOI: 10.1016/j.jafr.2023.100747.
110. Бурак Л. Ч., Сапач А. Н., Завалей А. П. Влияние обработки холодной плазмой на качество и пищевую ценность растительного сырья. Обзор предметного поля // Известия вузов. Прикладная химия и биотехнология. – 2024. – Т. 14, № 2 (49). – С. 173–183. – DOI: 10.21285/achb.914.
111. Boateng I. D. Recent Processing of Fruits and Vegetables Using Emerging Thermal and Non‑Thermal Technologies. A Critical Review of Their Potentialities and Limitations on Bioactives, Structure, and Drying Performance // Critical Reviews in Food Science and Nutrition. – 2024. – Vol. 64, No. 13. – P. 4240–4274. – DOI: 10.1080/10408398.2022.2140121.
112. Effect of Cold Plasma Pretreatment on Drying Kinetics and Quality Attributes of Apple Slices in Refractance Window Drying / K. Subrahmanyam, K. Gul, S. Paridala [et al.] // Innovative Food Science & Emerging Technologies. – 2024. – Vol. 92. – P. 103594. – DOI: 10.1016/j.ifset.2024.103594.
113. Cold Plasma: An Emerging Pretreatment Technology for the Drying of Jujube Slices / T. Bao, X. Hao, M. R. I. Shishir [et al.] // Food Chemistry. – 2021. – Vol. 337, No. 866. – P. 127783. – DOI: 10.1016/j.foodchem.2020.127783.
114. Cold Plasma Enhances Drying and Color, Rehydration Ratio and Polyphenols of Wolfberry Via Microstructure and Ultrastructure Alteration / Y.‑H. Zhou, S. K. Vidyarthi, C.‑S. Zhong [et al.] // LWT. – 2020. – Vol. 134. – P. 10173. – DOI: 10.1016/j.lwt.2020.110173.
115. Бурак Л. Ч. Влияние технологии высокого давления на ферментативную активность фруктовых консервов // Научное обозрение. Биологические науки. – 2022. – № 4. – С. 63–73. – DOI: 10.17513/srbs.1296.
116. Yucel U., Alpas Y., Bayindirli A. Evaluation of High Pressure Pretreatment for Enhancing the Drying Rates of Carrot, Apple, and Green Bean // Journal of Food Engineering. – 2010. – Vol. 98. – P. 266–272. – DOI: 10.1016/j.jfoodeng.2010.01.006.
117. Influence of high hydrostatic pressure (HHP) pretreatment on plum (Prunus salicina) drying: Drying approach, physical, and morpho‑structural properties of the powder and total phenolic compounds / N. C. Santos, R. L. J. Almeida, G. M. da Silva [et al.] // Journal of Food Processing and Preservation. – 2022. – Vol. 46. – P. e16968. – DOI: 10.1111/jfpp.16968/
118. Influence of High Hydrostatic Pressure Pretreatment on Properties of Vacuum‑Freeze Dried Strawberry Slices / L. Zhang, Y. Qiao, C. Wang [et al.] // Food Chemistry. – 2020. – Vol. 331. – P. 127203. – DOI: 10.1016/j.foodchem.2020.127203.
Рецензия
Для цитирования:
Бурак Л.Ч., Сапач А.Н., Лукин А.А. Современные методы предварительной обработки для повышения качества и пищевой ценности сухофруктов: обзор. Инновации и продовольственная безопасность. 2025;(4):8-42. https://doi.org/10.31677/2311-0651-2025-50-4-8-42
For citation:
Burak L.Ch., Sapach A.N., Lukin А.А. Modern methods of pre-processing to improve the quality and nutritional value of dried fruits. a review. Innovations and Food Safety. 2025;(4):8-42. (In Russ.) https://doi.org/10.31677/2311-0651-2025-50-4-8-42
JATS XML


















