Preview

Инновации и продовольственная безопасность

Расширенный поиск

Современные методы предварительной обработки для повышения качества и пищевой ценности сухофруктов: обзор

https://doi.org/10.31677/2311-0651-2025-50-4-8-42

Аннотация

Традиционные пищевые привычки, включающие употребление ультраобработанных продуктов с низкой калорийностью, высоким содержанием сахара и соли, а также недостаточное потребление свежих фруктов и овощей, отрицательно влияют на здоровье человека. Из-за сезонности сырья и ограниченного доступа к свежим фруктам и овощам данные продукты зачастую присутствуют на рынке в сушеном виде, что обеспечивает их длительный срок хранения. Цель данного исследования – обзор и анализ современных технологий и способов получения качественных сушеных фруктов и закусок на их основе, обладающих высокой пищевой ценностью и приемлемыми органолептическими показателями. В качестве материалов для настоящего обзора использованы результаты научных исследований, опубликованные в период 2015–2025 гг. Научный поиск источников по теме исследования проводили по ключевым словам в библиографических базах Scopus, Web of science, PubMed и Google Scholar. Анализ данных выполнен с их систематизацией, обобщением, промежуточными выводами и общим заключением. Обзор научных публикаций показал, что с целью обеспечения высокой пищевой ценности, максимального сохранения биологически активных соединений, качества и безопасности, длительного срока хранения сушёных фруктов и закусок применяют различные современные нетермические методы предварительной обработки перед сушкой, такие как импульсное электрическое поле, ультразвуковая обработка, высокогидростатическая обработка, импульсный свет и холодная плазма. Вакуумная пропитка, осмотическое обезвоживание перед сушкой способствуют повышению пищевой ценности сухофруктов, а также энергоэффектвности процесса сушки. Важный и перспективный подход к производству сушеных закусок предполагает вовлечение побочных продуктов пищевой промышленности, включая отходы фруктов. Эта стратегия не только решает проблемы пищевых отходов, но и создает закуски или ингредиенты, богатые питательными веществами. Дальнейшие исследования должны быть направлены на установление оптимальных режимов обработки сырья с целью повышения энергоэффективности процесса сушки плодоовощного сырья при производстве закусок с максимальным сохранением пищевой ценности, улучшением органолептических показателей качества и повышением общей приемлемости для потребителей.

Об авторах

Л. Ч. Бурак
Общество с ограниченной ответственностью «БЕЛРОСАКВА»
Россия

Л. Ч. Бурак, доктор философии в области пищевых наук



А. Н. Сапач
Общество с ограниченной ответственностью «БЕЛРОСАКВА»
Россия

А. Н. Сапач, аспирант



А. А. Лукин
Южно-Уральский государственный аграрный университет
Россия

А. А. Лукин, кандидат технических наук, доцент



Список литературы

1. Бурак Л. Ч. Влияние современных способов обработки и стерилизации на качество плодо‑ овощного сырья и соковой продукции: монография. – М.: ИНФРА‑М, 2025. – 236 с. – DOI: 10.12737/0.12737/2154991. – ISBN: 978‑5‑16‑020036‑1.

2. Бурак Л. Ч. Ультрапереработанные продукты питания: методы снижения их калорийности и повы‑ шения пищевой ценности (Обзор предметного поля) // Health, Food & Biotechnology. – 2025. – Т. 7, № (2). – С. 41–75. – DOI: 10.36107/hfb.2025.i2.s258.

3. Fruits and Vegetables for Healthy Diets: Priorities for Food System Research and Action / J. Harris, B. de Steenhuijsen Piters, S. McMullin [et al.] // Science and Innovations for Food Systems Transformation / Eds. J. von Braun, K. Afsana, L. O. Fresco, M. H. A. Hassan. – Cham, Switzerland: Springer International Publishing, 2023. – P. 87–104. – DOI: 10.1007/978‑3‑031‑15703‑5_6.

4. Functional Dehydrated Foods for Health Preservation / R. M. S. C. Morais, A. M. M. B. Morais, I. Dammak // Journal of Food Quality. – 2018. – Vol. 3. – P. 1–29. – DOI: 10.1155/2018/1739636.

5. The Effect of Storage Time and Temperature on Quality Changes in Freeze‑Dried Snacks Obtained With Fruit Pomace and Pectin Powders as a Sustainable Approach for New Product Development / M. Karwacka, A. Ciurzyńska, S. Galus, M. Janowicz // Sustainability. – 2024. – Vol. 16, No. 11. – P. 4736. – DOI: 10.3390/su16114736.

6. Sustainable Approach for Development Dried Snack Based on Actinidia deliciosa Kiwifruit / M. Nowacka, C. Mannozzi, M. Dalla Rosa, U. Tylewicz. // Applied Sciences. – 2023. – Vol. 13, No. 4. – P. 2189. – DOI: 10.3390/app13042189.

7. Selected Dried Fruits as a Source of Nutrients / I. Rybicka, J. Kiewlicz, P. Ł. Kowalczewski, A. Gliszczyńska‑Świgło // European Food Research and Technology. – 2021. – Vol. 247, No. 10. – P. 2409– 2419. – DOI: 10.1007/s00217‑021‑03802‑1.

8. Бурак Л. Ч. Современные методы бланширования и их влияние на процесс сушки фруктов и овощей // Вестник МГТУ. – 2025. – Т. 28, № 2. – С. 273–295. – DOI: 10.21443/1560‑9278‑2025‑28‑2‑273‑295.

9. Nutrient Density, Added Sugar, and Fiber Content of Commercially Available Fruit Snacks in the United States From 2017 to 2022 / H. Fu, C. H. Lee, A. A. Nolden, A. J. Kinchla // Nutrients. – 2024. – Vol. 16, No. 2. – P. 292. – DOI: 10.3390/nu16020292.

10. Бурак Л. Ч. Использование современных технологий обработки для увеличения срока хранения фруктов и овощей. Обзор предметного поля // Ползуновский вестник. – 2024. – № 1. – С. 99–119. – DOI: 10.25712/ASTU.2072‑8921.2024.01.013.

11. Омелько В. А. Использование сухофруктов в рационе питания с целью профилактики онкологической патологии // Современные проблемы гигиены, радиационной и экологической медицины. – 2023. – Т. 13, № S1. – С. 128–133.

12. Макаренкова О. Г., Шевякова Л. В., Бессонов В. В. Сухофрукты – природный источник микроэлементов // Вопросы питания. – 2015. – Т. 84, № S5. – С. 51.

13. Emerging Technologies in Dried Fruit Snacks: Nutritional Enrichment and Sustainable Production / M. Nowacka, H. Kowalska, U. Tylewicz [et al.] // Compr Rev Food Sci Food Saf. – 2025. – Vol. 24 (4). – P. e70225. – DOI: 10.1111/1541‑4337.70225.

14. Development of Drying and Roasting Processes for the Production of Plant‑Based Pro‑Healthy Snacks in the Light of Nutritional Trends and Sustainable Techniques / M. Chobot, M. Kozłowska, A. Ignaczak,H. Kowalska // Trends in Food Science & Technology. – 2024. – Vol. 149 (18). – P. 104553. – DOI: 10.1016/j.tifs.2024.104553.

15. Eating Habits and Sustainable Food Production in the Development of Innovative «Healthy Snacks» / A. Ciurzyńska, P. Cieśluk, M. Barwińska [et al.] // Sustainability. – 2019. – Vol. 11, No. 10. – P. 2800. – DOI: 10.3390/su11102800.

16. Prebiotic-Alginate Edible Coating on Fresh‑Cut Apple as a New Carrier for Probiotic Lactobacilli and Bif idobacteria / M. V. Alvarez, M. F. Bambace, G. Quintana [et al.] // LWT. – 2021. – Vol. 137. – P. 110483. – DOI: 10.1016/j.lwt.2020.110483.

17. Effect of Selected Drying Methods and Emerging Drying Intensification Technologies on the Quality of Dried Fruit: A Review / M. Radojčin, I. Pavkov, D. Bursać Kovačević [et al.] // Processes. – 2021. – Vol. 9, No. 1. – P. 132. – DOI: 10.3390/pr9010132.

18. Sustainable Development of Apple Snack Formulated With Blueberry Juice and Trehalose / J. M. Castagnini, S. Tappi, U. Tylewicz [et al.] // Sustainability. – 2021. – Vol. 13, No. 16. – P. 9204. – DOI: 10.3390/su13169204.

19. Apple Slices Enriched With Aloe vera by Vacuum Impregnation / A. Derossi, I. Ricci, A. G. Fiore Ricci, C. Severini // Italian Journal of Food Science. – 2018. – Vol. 30, No. 2. – P. 256–267. – DOI: 10.14674/IJFS‑939.

20. Effect of Ultrasound on Mass Transfer During Vacuum Impregnation and Selected Quality Parameters of Products: A Case Study of Carrots / E. Radziejewska‑Kubzdela, J. Szadzińska, R. Biegańska‑Marecik [et al.] // Ultrasonics Sonochemistry. – 2023. – Vol. 99, No. 9. – P. 106592. – DOI: 10.1016/j.ultsonch.2023.106592.

21. Hawthorn Drying: An Exploration of Ultrasound Treatment and Microwave–Hot Air Drying / M. Kaveh, M. Nowacka, E. Khalife [et al.] // Processes. – 2023. – Vol. 11, No. 4. – P. 978. – DOI: 10.3390/pr11040978.

22. Hot Air‑Assisted Radiofrequency Drying of Avocado: Drying Behavior and the Associated Effect on the Characteristics of Avocado Powder / H. N. Özbek, B. Koç, D. Koçak Yanık, F. Göğüş // Journal of Food Process Engineering. – 2022. – Vol. 45, No. 9. – P. 1–11. – DOI: 10.1111/jfpe.14094.

23. Hybrid Microwave‑Hot Air Drying of the Osmotically Treated Carrots / A. U. D. Souza, J. L. G. Corrêa, D. H. Tanikawa [et al.] // LWT. – 2022. – Vol. 156. – P. 113046. – DOI: 10.1016/j.lwt.2021.113046.

24. Nutritional Value, Physical Properties, and Sensory Quality of Sugar‑Free Cereal Bars Fortified With Grape and Apple Pomace / A. Blicharz‑Kania, K. Vasiukov, A. Sagan [et al.] // Applied Sciences. – 2023. – Vol. 13, No. 18. – P. 10531. – DOI: 10.3390/app131810531.

25. Opportunities in Valorisation of Industrial Food Waste Into Extruded Snack Products – A Review / A. Raleng, N. G. J. Singh, P. Chavan, A. K. Attkan // Indian Journal of Agricultural Sciences. – 2022. – Vol. 92, No. 10. – P. 1167–1174. – DOI: 10.56093/ijas.v92i10.113487.

26. Бурак Л. Ч., Егорова З. Е. Валоризация отходов переработки растительного сырья как путь достижения целей устойчивого развития // Sciences of Europe. – 2024. – № 152. – С. 13–21. – DOI: 10.5281/zenodo.14063716.

27. Development of Healthy and Clean‑Label Crackers Incorporating Apple and Carrot Pomace Flours / S. Salari, T. Castigliego, J. Ferreira [et al.] // Sustainability. – 2024. – Vol. 16, No. 14. – P. 5995. – DOI: 10.3390/su16145995.

28. Recent advances in vacuum impregnation of fruits and vegetables processing: A concise review / B. R. Vinod, R. Asrey, S. Sethi [et al.] // Heliyon. – 2024. – Vol. 10. – P. e28023. – DOI: 10.1016/j.heliyon.2024.e28023.

29. Saleena P., Jayashree E., Anees K. A. Comprehensive Review on Vacuum Impregnation: Mechanism, Applications and Prospects // Food and Bioprocess Technology. – 2024. – Vol. 17, No. 6. – P. 1434–1447. – DOI: 10.1007/s11947‑023‑03185‑z.

30. Vacuum Impregnation Process and Its Potential in Modifying Sensory, Physicochemical and Nutritive Characteristics of Food Products / A. S. Panayampadan, M. S. Alam, R. Aslam, J. Kaur // Food Engineering Reviews. – 2022. – Vol. 14, No. 2. – P. 229–256. – DOI: 10.1007/s12393‑022‑09312‑4.

31. Optimization and Modeling of Vacuum Impregnation of Pineapple Rings and Comparison With Osmotic Dehydration / B. Thomas, S. K. Pulissery, K. B. Sankalpa [et al.] // Journal of Food Science. – 2024. – Vol. 89, No. 1. – P. 494–512. – DOI: 10.1111/1750‑3841.16875.

32. Assessment of Ultrasound‑Assisted Vacuum Impregnation as a Method for Modifying Cranberries’ Quality / D. Mierzwa, J. Szadzińska, B. Gapiński [et al.] // Ultrasonics Sonochemistry. – 2022. – Vol. 89. – P. 106117. – DOI: 10.1016/j.ultsonch.2022.106117.

33. Effectiveness of Cranberry (Vaccinium macrocarpon, cv. Pilgrim) Vacuum Impregnation: The Effect of Sample Pretreatment, Pressure, and Processing Time / D. Mierzwa, J. Szadzińska, E. Radziejewska‑ Kubzdela [et al.] // Food and Bioproducts Processing. – 2022. – Vol. 134. – P. 223234. – DOI: 10.1016/j.fbp.2022.06.001.

34. Effects of Optimized Osmotic Vacuum Impregnation on Quality Properties of Red Abalone (Haliotis rufescens) Drying / S. Pizarro‑Oteíza, C. Giovagnoli‑Vicuña, V. Briones‑Labarca, F. Salazar // Journal of Food Measurement and Characterization. – 2023. – Vol. 17, No. 5. – P. 4520–4529. – DOI: 10.1007/s11694‑023‑01987‑5.

35. Pulsed Vacuum Osmotic Dehydration on Physiological Compound Enrichment of Model Food / K. Sittisuanjik, P. Chottanom, A. Moongngarm, S. Deeseenthum // Journal of Sustainability Science and Management. – 2021. – Vol. 16, No. 2. – P. 38–52. – DOI: 10.46754/jssm.2021.02.006.

36. Wang X., Kahraman O., Feng H. Impregnation‑Mediated Natural Fortification of Sliced Apples With Hypertonic Fruit Juices: Mass Transfer Kinetics and Product Quality // 2021 ASABE Annual International Virtual Meeting (July 12–16, 2021). – 2021. – Pap. 2100758. – DOI: 10.13031/aim.202100758.

37. From Biorefinery of Microalgal Biomass to Vacuum Impregnation of Fruit. A Multidisciplinary Strategy to Develop Innovative Food With Increased Nutritional Properties / A. Derossi, M. Francavilla, M. Monteleone [et al.] // Innovative Food Science & Emerging Technologies. – 2021. – Vol. 70. – P. 102677. – DOI: 10.1016/j.ifset.2021.102677.

38. Fortified Apple (Malus spp., var. Fuji) Snacks by Vacuum Impregnation of Calcium Lactate and Convective Drying / F. R. Assis, L. G. G. Rodrigues, G. Tribuzi [et al.] // LWT. – 2019. – Vol. 113. – P. 108298. – DOI: 10.1016/j.lwt.2019.108298.

39. Probiotic Survival and In Vitro Digestion of L. salivarius Spp. Salivarius Encapsulated by High Homogenization Pressures and Incorporated Into a Fruit Matrix / E. Betoret, N. Betoret, L. Calabuig‑ Jiménez [et al.] // LWT. – 2019. – Vol. 111. – P. 883888. – DOI: 10.1016/j.lwt.2019.05.088.

40. Comparison of Vacuum Impregnation and Soaking Techniques for Addition of the Probiotic Lactobacillus acidophilus to Minimally Processed Melon / P. M. de Oliveira, A. M. Ramos, E. M. F. Martins [et al.] // International Journal of Food Science & Technology. – 2017. – Vol. 52, No. 12. – P. 2547–2554. – DOI: 10.1111/ijfs.13540.

41. González-Pérez J. E., Ramírez-Corona N., López-Malo A. Mass Transfer During Osmotic Dehydration of Fruits and Vegetables: Process Factors and Non‑Thermal Methods // Food Engineering Reviews. – 2021. – Vol. 13, No. 2. – P. 344374. – DOI: 10.1007/s12393‑020‑09276‑3.

42. Combined Use of Blanching and Vacuum Impregnation With Trehalose and Green Tea Extract as Pre‑ Treatment to Improve the Quality and Stability of Frozen Carrots / V. Santarelli, L. Neri, R. Moscetti [et al.] // Food and Bioprocess Technology. – 2021. – Vol. 14, No. 7. – P. 1326–1340. – DOI: 10.1007/s11947‑021‑02637‑8.

43. Yılmaz F. M., Ersus Bilek S. Natural Colorant Enrichment of Apple Tissue With Black Carrot Concentrate Using Vacuum Impregnation // International Journal of Food Science & Technology. – 2017. – Vol. 52, No. 6. – P. 15081516. – DOI: 10.1111/ijfs.13426.

44. Vacuum Impregnation of β‑Carotene and Lutein in Minimally Processed Fruit Salad / M. Santana Moreira, D. de Almeida Paula, E. M. Furtado Martins [et al.] // Journal of Food Processing and Preservation. – 2018. – Vol. 42, No. 3. – P. e13545. – DOI: 10.1111/jfpp.13545.

45. Demir E., Dymek K., Galindo F. G. Technology Allowing Baby Spinach Leaves to Acquire Freezing Tolerance // Food and Bioprocess Technology. – 2018. – Vol. 11, No. 4. – P. 809–817. – DOI: 10.1007/s11947‑017‑2044‑7.

46. Nyoto I. C., Gómez Galindo F. A. Comparison Between Pulsed Electric Field and Moderate Electric Field for Their Effectiveness in Improving the Freezing Tolerance of Rocket Leaves // Biochemistry and Biophysics Reports. – 2023. – Vol. 35. – P.101515. – DOI: 10.1016/j.bbrep.2023.101515.

47. Effect of Pulsed Electric Field Coupled With Vacuum Infusion on Quality Parameters of Frozen/Thawed Strawberries / E. Velickova, U. Tylewicz, M. Dalla Rosa [et al.] // Journal of Food Engineering. – 2018. – Vol. 233. – P 57–64. – DOI: 10.1016/j.jfoodeng.2018.03.030.

48. Iron Fortification of Whole Potato Using Vacuum Impregnation Technique With a Pulsed Electric Field Pretreatment / M. Mashkour, Y. Maghsoudlou, M. Kashaninejad, M. Aalami // Potato Research. – 2018. – Vol. 61, No. 4. – P. 375389. – DOI: 10.1007/s11540‑018‑9392‑1.

49. Effect of the Pulsed Electric Field Treatment on Physical, Chemical and Structural Changes of Vacuum Impregnated Apple Tissue in Aloe vera Juices / M. Trusinska, F. Drudi, K. Rybak [et al.] // Foods. – 2023. – Vol. 12, No. 21. – P. 3957. – DOI: 10.3390/foods12213957.

50. Vacuum Impregnation of Chitosan‑Based Edible Coating in Minimally Processed Pumpkin / A. S. de Soares, A. M. Ramos, É. N. R. Vieira [et al.] // International Journal of Food Science & Technology. – 2018. – Vol. 53, No. 9. – P. 2229–2238. – DOI: 10.1111/ijfs.13811.

51. Senturk Parreidt T., Müller K., Schmid M. Alginate‑Based Edible Films and Coatings for Food Packaging Applications // Foods. – 2018. – Vol. 7, No. 10. – P. 170. – DOI: 10.3390/foods7100170.

52. The Effect of Selected Fruit Juice Concentrates Used as Osmotic Agents on the Drying Kinetics and Chemical Properties of Vacuum‑Microwave Drying of Pumpkin / K. Lech, A. Figiel, A. Michalska [et al.] // Journal of Food Quality. – 2018. – P. 1–11. – DOI: 10.1155/2018/7293932. – ISBN: 1745‑4557.

53. Мачнева И. А., Дрофичева Н. В., Причко Т. Г. Научное обоснование применения методов дегидратации плодово‑ягодного сырья при производстве сухофруктов // Плодоводство и виноградарство Юга России. – 2021. – № 70 (4). – С. 269–296. – DOI: 10.30679/2219‑5335‑2021‑4‑70‑269‑296.

54. Edible Coatings as Osmotic Dehydration Pretreatment in Nutrient‑Enhanced Fruit or Vegetable Snacks Development: A Review / H. Kowalska, A. Marzec, E. Domian [et al.] // Comprehensive Reviews in Food Science and Food Safety. – 2021. – Vol. 20, No. 6. – P. 5641–5674. – DOI: 10.1111/1541‑4337.12837.

55. Ahmed I., Qazi I. M., Jamal S. Developments in Osmotic Dehydration Technique for the Preservation of Fruits and Vegetables // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 34. – P. 29–43. – DOI: 10.1016/j.ifset.2016.01.003.

56. Çağlayan D., Mazı B. I. Effects of Ultrasound‑Assisted Osmotic Dehydration as a Pretreatment and Finish Drying Methods on the Quality of Pumpkin Slices // Journal of Food Processing and Preservation. – 2018. – Vol. 42, No. 9. – P. e13679. – DOI: 10.1111/jfpp.13679.

57. Бурак Л. Ч., Сапач А. Н. Биологически активные вещества бузины: свойства, методы извлечения и сохранения // Пищевые системы. – 2023. – Т. 6, № 1. – С. 80–94. – DOI: 10.21323/2618‑9771‑2023‑6‑1‑80‑94.

58. Saleena P., Jayashree E., Anees K. Recent Developments in Osmotic Dehydration of Fruits and Vegetables: A Review // Pharma Innovation. – 2022. – Vol. 11, No. 2. – P. 40–50.

59. The Effect of Filtration on Physical and Chemical Properties of Osmo‑Dehydrated Material / K. Masztalerz, A. Figiel, A. Michalska‑Ciechanowska [et al.] // Molecules. – 2020. – Vol. 25, No. 22. – P. 5412. – DOI: 10.3390/molecules25225412.

60. Influence of Osmodehydration Pretreatment and Combined Drying Method on the Bioactive Potential of Sour Cherry Fruits / P. Nowicka, A. Wojdyło, K. Lech, A. Figiel // Food and Bioprocess Technology. – 2015. – Vol. 8, No. 4. – P. 824836. – DOI: 10.1007/s11947‑014‑1447‑y.

61. Figiel A., Michalska A. Overall Quality of Fruits and Vegetables Products Affected by the Drying Processes With the Assistance of Vacuum‑Microwaves // International Journal of Molecular Sciences. – 2016. – Vol. 18, No. 1. – P. 71. – DOI: 10.3390/ijms18010071.

62. Assis F. R., Morais R. M. S. C., Morais A. M. M. B. Mass Transfer in Osmotic Dehydration of Food Products: Comparison between Mathematical Models // Food Engineering Reviews. – 2016. – Vol. 8, No. 2. – P. 116–133. – DOI: 10.1007/s12393‑015‑9123‑1.

63. Mari A., Parisouli D. N., Krokida M. Exploring Osmotic Dehydration for Food Preservation: Methods, Modelling, and Modern Applications // Foods. – 2024. – Vol. 13, No. 17. – P. 2783. – DOI: 10.3390/foods13172783.

64. Wang X., Feng H. Pea Protein Isolate and Inulin as Plant‑Based Biomacromolecules for Reduction of Sugar Uptake in Osmotic Dehydration // Journal of Food Process Engineering. – 2023. – Vol. 46, No. 9. – P. 1–10. – DOI: 10.1111/jfpe.14417.

65. Insight Into the Effect of Osmosis Agents on Macro‑ and Micro‑ Texture, Water Distribution, and Thermal Stability of Instant Controlled Pressure Drop Drying Peach Chips / F. Wang, J. Bi, M. Lyu, J. Lyu // Food Chemistry. – 2024. – Vol. 440. – P. 138236. – DOI: 10.1016/j.foodchem.2023.138236.

66. Impact of Using Alternative Sweetener as Osmotic Agent on Mass Transfer, Colour and Texture Properties during Dip Dehydration of Apple Slice / I. N. Mohd Fadil, W. M. F. Wan Mokhtar, W. A. F. Wan Mohamad, I. Ismail // Journal of Agrobiotechnology. – 2021. – Vol. 12, No. 1S. – P. 74–82. – DOI: 10.37231/jab.2021.12.1S.272.

67. Wang X., Kapoor R., Feng H. Exploring the Effects of Vacuum and Ultrasound Treatments on Calcium Fortification in Osmotically Dehydrated Apple Slices // LWT. – 2023. – Vol. 187. – P. 115386. – DOI: 10.1016/j.lwt.2023.115386.

68. Shelf-Life Enhancement Applying Pulsed Electric Field and High‑Pressure Treatments Prior to Osmotic Dehydration of Fresh‑Cut Potatoes / M. Katsouli, E. Dermesonlouoglou, G. Dimopoulos [et al.] // Foods. – 2024. – Vol. 13, No. 1. – P. 171. – DOI: 10.3390/foods13010171.

69. Osmotic Dehydration Assisted Impregnation of Lactobacillus rhamnosus in Banana and Effect of Water Activity on the Storage Stability of Probiotic in the Freeze‑driedProduct / M. P. Rascón, K. Huerta‑Vera, L. A. Pascual‑Pineda [et al.] // LWT. – 2018. – Vol. 92. – P. 490–496. – DOI: 10.1016/j.lwt.2018.02.074.

70. Osmotic Dehydration of Honeoye Strawberries in Solutions Enriched With Natural Bioactive Molecules / H. Kowalska, A. Marzec, J. Kowalska [et al.] // LWT. – Food Science and Technology. – 2017. – Vol. 85. – P. 500–505. – DOI: 10.1016/j.lwt.2017.03.044.

71. The Influence of Physical Properties of Selected Plant Materials on the Process of Osmotic Dehydration / K. Lech, A. Michalska, A. Wojdyło [et al.] // LWT. – 2018. – Vol. 91. – P. 588–594. – DOI: 10.1016/j.lwt.2018.02.012.

72. Intermittent Microwave Drying and Heated Air Drying of Fresh and Isomaltulose (Palatinose) Impregnated Strawberry / L. L. Macedo, J. L. G. Corrêa, I. Petri Júnior [et al.] // LWT. – 2022. – Vol. 155. – P. 112918. – DOI: 10.1016/j.lwt.2021.112918.

73. Sethi K., Kaur M. Effect of Osmotic Dehydration on Physicochemical Properties of Pineapple Using Honey, Sucrose and Honey‑Sucrose Solutions // International Journal of Engineering and Advanced Technology. – 2019. – Vol. 9, No. 1. – P. 6257–6262. – DOI: 10.35940/ijeat.A2026.109119.

74. Combined Hot Air and Microwave‑Vacuum Drying of Cranberries: Effects of Pretreatments and Pulsed Vacuum Osmotic Dehydration on Drying Kinetics and Physicochemical Properties / Z.‑L. Liu, I. Staniszewska, D. Zielinska [et al.] // Food and Bioprocess Technology. – 2020. – Vol. 13, No. 10. – P. 1848–1856. – DOI: 10.1007/s11947‑020‑02507‑9.

75. Review of Osmotic Dehydration: Promising Technologies for Enhancing Products’ Attributes, Opportunities, and Challenges for the Food Industries / A. Asghari, P. A. Zongo, E. F. Osse [el al.] // Comprehensive Reviews in Food Science and Food Safety. – 2024. – Vol. 23, No. 3. – P. 128. – DOI: 10.1111/1541‑4337.13346.

76. Şahin U., Öztürk H. K. Effects of Pulsed Vacuum Osmotic Dehydration (PVOD) on Drying Kinetics of Figs (Ficus carica L) // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 36. – P. 104–111. – DOI: 10.1016/j.ifset.2016.06.003.

77. Effects of Osmotic Dehydration (With and Without Sonication) and Pectin‑Based Coating Pretreatments on Functional Properties and Color of Hot‑Air Dried Apricot Cubes / R. Sakooei‑Vayghan, S. H. Peighambardoust, J. Hesari, D. Peressini // Food Chemistry. – 2020. – Vol. 311. – P. 125978. – DOI: 10.1016/j.foodchem.2019.125978.

78. Salehi F., Cheraghi R., Rasouli M. Mass Transfer Analysis and Kinetic Modeling of Ultrasound‑Assisted Osmotic Dehydration of Kiwifruit Slices // Scientific Reports. – 2023. – Vol. 13, No. 1. – P. 11859. – DOI: 10.1038/s41598‑023‑39146‑x.

79. Effects of Pulsed Electric Field‑Assisted Osmotic Dehydration and Edible Coating on the Recovery of Anthocyanins From In Vitro Digested Berries / G. Oliveira, U. Tylewicz, M. Dalla Rosa [et al.] // Foods. – 2019. – Vol. 8, No. 10. – P. 505. – DOI: 10.3390/foods8100505.

80. Drying Characteristics, Microstructure, Glass Transition Temperature, and Quality of Ultrasound‑ Strengthened Hot Air Drying on Pear Slices / Y. Liu, Y. Zeng, Q. Wang [et al.] // Journal of Food Processing and Preservation. – 2019. – Vol. 43, No. 3. – P. e13899. – DOI: 10.1111/jfpp.13899.

81. Osmotic Dehydration Under High Hydrostatic Pressure: Effects on Antioxidant Activity, Total Phenolics Compounds, Vitamin C and Col of Strawberry (Fragaria vesca) / Y. Nuñez‑Mancilla, M. Prez‑Won, E. Uribe [et al.] // LWT. – Food Science and Technology. – 2013. – Vol. 52, No. 2. – P. 151–156. – DOI: 10.1016/j.lwt.2012.02.027.

82. Araya-Farias M., Macaigne O., Ratti C. On the Development of Osmotically Dehydrated Seabuckthorn Fruits: Pretreatments, Osmotic Dehydration, Postdrying Techniques, and Nutritional Quality // Drying Technology. – 2014. – Vol. 32, No. 7. – P. 813–819. – DOI: 10.1080/07373937.2013.866143.

83. Rodriguez A., Soteras M., Campañone L. Review: Effect of the Combined Application of Edible Coatings and Osmotic Dehydration on the Performance of the Process and the Quality of Pear Cubes // International Journal of Food Science & Technology. – 2021. – Vol. 56, No. 12. – P. 6474–6483. – DOI: 10.1111/ijfs.15357.

84. Etemadi A., Alizadeh R., Sirousazar M. The Influence of Natural Basil Seed Gum Coats on the Kinetics of Osmotic Dehydration of Apple Rings // Food and Bioprocess Technology. – 2020. – Vol. 13, No. 9. – P. 1505–1515. – DOI: 10.1007/s11947‑020‑02492‑z.

85. Comparison of Pulsed Vacuum and Ultrasound Osmotic Dehydration on Drying of Chinese Ginger (Zingiber officinale Roscoe): Drying Characteristics, Antioxidant Capacity, and Volatile Profiles / K. An, D. Tang, J. Wu [et al.] // Food Science & Nutrition. – 2019. – Vol. 7, No. 8. – P. 2537–2545. – DOI: 10.1002/fsn3.1103.

86. George J. M., Senthamizh Selvan T., Rastogi N. K. High‑Pressure‑Assisted Infusion of Bioactive Compounds in Apple Slices // Innovative Food Science & Emerging Technologies. – 2016. – Vol. 33. – P. 100–107. – DOI: 10.1016/j.ifset.2015.11.010.

87. Dehydration – rehydration Mechanism of Vegetables at the Cell‑Wall and Cell‑Membrane Levels and Future Research Challenges / B. Wang, Y. Li, Y. Lv [et al.] // Critical Reviews in Food Science and Nutrition. – 2024. – Vol. 64, No. 30. – P. 11179–11195. – DOI: 10.1080/10408398.2023.2233620.

88. Obajemihi O. I., Cheng J.-H., Sun D.-W. Enhancing Moisture Transfer and Quality Attributes of Tomato Slices Through Synergistic Cold Plasma and Osmodehydration Pretreatments During Infrared‑Assisted Pulsed Vacuum Drying // Journal of Food Engineering. – 2025. – Vol. 387. – P. 112335. – DOI: 10.1016/j.jfoodeng.2024.112335.

89. Mohammadkhani M., Koocheki A., Mohebbi M. Effect of Lepidium perfoliatum Seed Gum – Oleic Acid Emulsion Coating on Osmotic Dehydration and Subsequent Air‑Drying of Apple Cubes // Progress in Organic Coatings. – 2024. – Vol. 186. – P. 107986. – DOI: 10.1016/j.porgcoat.2023.107986.

90. Бурак Л. Ч., Завалей А. П. Эффективность комбинированного воздействия ультразвука и микроволн при обработке пищевых продуктов. Обзор // Техника и технология пищевых производств. – 2024. – Т. 54, № 2. – С. 342–357. – DOI: 10.21603/2074‑9414‑2024‑2‑2510.

91. Казуб В. Т., Кошкарова А. Г. Применение импульсного электрического поля для интенсификации процессов экстрагирования // Промышленные процессы и технологии. – 2022. – Т. 2, № 3. – С. 40–46. – DOI 10.37816/2713‑0789‑2022‑2‑3(5)‑40‑46.

92. A Novel Application of Pulsed Electric Field as a Key Process for Quick‑Cooking Rice Production / S. Thongkong, A. Yawootti, W. Klangpetch [et al.] // Innovative Food Science & Emerging Technologies. – 2023. – Vol. 90. – P. 103494. – DOI: 10.1016/j.ifset.2023.103494.

93. Бурак Л. Ч. Современные методы обработки и консервирования плодоовощного сырья: учебное пособие. – СПб.: Лань, 2024. – 488 с. – ISBN 978‑5‑ 507‑48119‑4.

94. Pulsed Electric Field‑Based Technology for Microbial Inactivation in Milk and Dairy Products / R. N. Cavalcanti, C. F. Balthazar, L. P. Margalho [et al.] // Current Opinion in Food Science. – 2023. – Vol. 54. – P. 101087. – DOI: 10.1016/j.cofs.2023.101087.

95. Бурак Л. Ч., Сапач А. Н. Влияние предварительной обработки импульсным электрическим полем на процесс сушки: обзор предметного поля // Хранение и переработка сельхозсырья. – 2023. – № 2. – С. 44–71. – DOI: 10.36107/spfp.2023.418.

96. Assessment of the Effect of Air Humidity and Temperature on Convective Drying of Apple With Pulsed Electric Field Pretreatment / A. Matys, D. Witrowa‑Rajchert, O. Parniakov, A. Wiktor // LWT. – 2023. – Vol. 188. – P. 115455. – DOI: 10.1016/j.lwt.2023.115455.

97. Giancaterino M., Werl C., Jaeger H. Evaluation of the Quality and Stability of Freeze‑Dried Fruits and Vegetables Pre‑Treated by Pulsed Electric Fields (PEF) // LWT. – 2024. – Vol. 191. – P. 115651. – DOI: 10.1016/j.lwt.2023.115651.

98. Ultrasound-Assisted Extraction of Anthocyanin From Black Rice Bran Using Natural Deep Eutectic Solvents: Optimization, Diffusivity, and Stability / R. Thakur, V. Gupta, P. Dhar [et al.] // Journal of Food Processing and Preservation. – 2022. – Vol. 46, No. 3. – P. 1–10. – DOI: 10.1111/jfpp.16309.

99. Effects of Ultrasound‑Assisted Immersion Freezing on the Muscle Quality and Myofibrillar Protein Oxidation and Denaturation in Sciaenops ocellatus / S. Qiu, F. Cui, J. Wang [et al.] // Food Chemistry. – 2022. – Vol. 377. – P. 131949. – DOI: 10.1016/j.foodchem.2021.131949.

100. Non-Thermal Ultrasonic Contact Drying of Pea Protein Isolate Suspensions: Effects on Physicochemical and Functional Properties / R. Kapoor, G. Karabulut, V. Mundada, H. Feng // International Journal of Biological Macromolecules. – 2023. – Vol. 253, No. P2. – P. 126816. – DOI: 10.1016/j.ijbiomac.2023.126816.

101. Çetin N., Sağlam C. Effects of Ultrasound Pretreatment Assisted Drying Methods on Drying Characteristics, Physical and Bioactive Properties of Windfall Apples // Journal of the Science of Food and Agriculture. – 2023. – Vol. 103, No. 2. – P. 534–547. – DOI: 10.1002/jsfa.12164.

102. Бурак Л. Ч., Сапач А. Н. Влияние действия ультразвука на функциональные свойства растительных белков. Обзор предметного поля // Химия растительного сырья. – 2024. – № 4. – С. 5–23. – DOI: 10.14258/jcprm.20240413599.

103. Salehi F., Inanloodoghouz M. Effects of Gum‑Based Coatings Combined With Ultrasonic Pretreatment Before Drying on Quality of Sour Cherries // Ultrasonics Sonochemistry. – 2023. – Vol. 100. – P. 106633. – DOI: 10.1016/j.ultsonch.2023.106633.

104. Karacabey E., Bardakçı M. S., Baltacıoğlu H. Physical Pretreatments to Enhance Purple‑Fleshed Potatoes Drying: Effects of Blanching, Ohmic Heating and Ultrasound Pretreatments on Quality Attributes // Potato Research. – 2023. – Vol. 66, No. 4. – P. 1117–1142. – DOI: 10.1007/s11540‑023‑09618‑8.

105. Combined Effect of Airborne Ultrasound and Temperature on the Drying Kinetics and Quality Properties of Kiwifruit (Actinidia deliciosa) / B. Llavata, A. Femenia, G. Clemente, J.A. Cárcel // Food and Bioprocess Technology. – 2024. – Vol. 17, No. 2. – P. 440–451. – DOI: 10.1007/s11947‑023‑03138‑6.

106. Influence of Ultrasound and Ethanol as a Pretreatment on Papaya Infrared and Convective Drying Characteristics and Quality Parameters / G. M. P. de Arruda, S. C. R. Brandão, E. V. da Silva Júnior [et al.] // Journal of Food Process Engineering. – 2023. – Vol. 46, No. 3. – P. 1–10. – DOI: 10.1111/jfpe.14255.

107. Multi-Frequency Power Ultrasound as a Novel Approach Improves Intermediate‑Wave Infrared Drying Process and Quality Attributes of Pineapple Slices / B. Xu, E. S. Tiliwa, B. Wei [et al.] // Ultrasonics Sonochemistry. – 2022. – Vol. 88. – P. 106083. – DOI: 10.1016/j.ultsonch.2022.106083.

108. Cold Plasma as an Emerging Energy‑Saving Pretreatment to Enhance Food Drying: Recent Advances, Mechanisms Involved, and Considerations for Industrial Applications / M. Gavahian, P. Nayi, K. Masztalerz [et al.] // Trends in Food Science & Technology. – 2024. – Vol. 143. – P. 104210. – DOI: 10.1016/j.tifs.2023.104210.

109. Cold Plasma as an Emerging Nonthermal Technology for Food Processing: A Comprehensive Review / S. Harikrishna, P. P. Anil, R. Shams, K. K. Dash // Journal of Agriculture and Food Research. – 2023. – Vol. 14. – P. 100747. – DOI: 10.1016/j.jafr.2023.100747.

110. Бурак Л. Ч., Сапач А. Н., Завалей А. П. Влияние обработки холодной плазмой на качество и пищевую ценность растительного сырья. Обзор предметного поля // Известия вузов. Прикладная химия и биотехнология. – 2024. – Т. 14, № 2 (49). – С. 173–183. – DOI: 10.21285/achb.914.

111. Boateng I. D. Recent Processing of Fruits and Vegetables Using Emerging Thermal and Non‑Thermal Technologies. A Critical Review of Their Potentialities and Limitations on Bioactives, Structure, and Drying Performance // Critical Reviews in Food Science and Nutrition. – 2024. – Vol. 64, No. 13. – P. 4240–4274. – DOI: 10.1080/10408398.2022.2140121.

112. Effect of Cold Plasma Pretreatment on Drying Kinetics and Quality Attributes of Apple Slices in Refractance Window Drying / K. Subrahmanyam, K. Gul, S. Paridala [et al.] // Innovative Food Science & Emerging Technologies. – 2024. – Vol. 92. – P. 103594. – DOI: 10.1016/j.ifset.2024.103594.

113. Cold Plasma: An Emerging Pretreatment Technology for the Drying of Jujube Slices / T. Bao, X. Hao, M. R. I. Shishir [et al.] // Food Chemistry. – 2021. – Vol. 337, No. 866. – P. 127783. – DOI: 10.1016/j.foodchem.2020.127783.

114. Cold Plasma Enhances Drying and Color, Rehydration Ratio and Polyphenols of Wolfberry Via Microstructure and Ultrastructure Alteration / Y.‑H. Zhou, S. K. Vidyarthi, C.‑S. Zhong [et al.] // LWT. – 2020. – Vol. 134. – P. 10173. – DOI: 10.1016/j.lwt.2020.110173.

115. Бурак Л. Ч. Влияние технологии высокого давления на ферментативную активность фруктовых консервов // Научное обозрение. Биологические науки. – 2022. – № 4. – С. 63–73. – DOI: 10.17513/srbs.1296.

116. Yucel U., Alpas Y., Bayindirli A. Evaluation of High Pressure Pretreatment for Enhancing the Drying Rates of Carrot, Apple, and Green Bean // Journal of Food Engineering. – 2010. – Vol. 98. – P. 266–272. – DOI: 10.1016/j.jfoodeng.2010.01.006.

117. Influence of high hydrostatic pressure (HHP) pretreatment on plum (Prunus salicina) drying: Drying approach, physical, and morpho‑structural properties of the powder and total phenolic compounds / N. C. Santos, R. L. J. Almeida, G. M. da Silva [et al.] // Journal of Food Processing and Preservation. – 2022. – Vol. 46. – P. e16968. – DOI: 10.1111/jfpp.16968/

118. Influence of High Hydrostatic Pressure Pretreatment on Properties of Vacuum‑Freeze Dried Strawberry Slices / L. Zhang, Y. Qiao, C. Wang [et al.] // Food Chemistry. – 2020. – Vol. 331. – P. 127203. – DOI: 10.1016/j.foodchem.2020.127203.


Рецензия

Для цитирования:


Бурак Л.Ч., Сапач А.Н., Лукин А.А. Современные методы предварительной обработки для повышения качества и пищевой ценности сухофруктов: обзор. Инновации и продовольственная безопасность. 2025;(4):8-42. https://doi.org/10.31677/2311-0651-2025-50-4-8-42

For citation:


Burak L.Ch., Sapach A.N., Lukin А.А. Modern methods of pre-processing to improve the quality and nutritional value of dried fruits. a review. Innovations and Food Safety. 2025;(4):8-42. (In Russ.) https://doi.org/10.31677/2311-0651-2025-50-4-8-42

Просмотров: 16

JATS XML


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-0651 (Print)