Preview

Инновации и продовольственная безопасность

Расширенный поиск

ОСОБЕННОСТИ СОСТАВА ОТРУБЕЙ ПШЕНИЦЫ И РЖИ И ИХ РОЛЬ В ПРОФИЛАКТИКЕ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ЧЕЛОВЕКА

https://doi.org/10.31677/2072-6724-2020-30-4-41-58

Аннотация

Проведен анализ литературы по лечебно-профилактическому воздействию компонентов вторичных продуктов переработки ржи и пшеницы – диетических волокон и фенольных соединений – на здоровье человека. Особую роль играют связанные с феруловой кислотой растворимые арабиноксиланы и ксилоолигосахариды, которые обладают пребиотическими, антиоксидантными и иммуномодулирующими свойствами. Экспериментальные и эпидемиологические исследования показали, что включение в рацион зерновых отрубей оказывает положительный эффект на здоровье человека и способствует снижению риска заболеваний, связанных с западным типом питания – атеросклероза, диабета второго типа, различных видов онкологии.

Об авторах

Н. Л. Лукьянчикова
Сибирский филиал ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН
Россия

Кандидат биологических наук



В. А. Скрябин
Сибирский филиал ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН

Кандидат технических наук



К. А. Табанюхов
Сибирский филиал ФГБНУ «ФНЦ пищевых систем им. В.М. Горбатова» РАН; Новосибирский государственный аграрный университет

Аспирант



Список литературы

1. МР 2.3.1.2432–08 Нормы физиологических потребностей в энергии и пищевых веществах для различных групп населения российской Федерации: метод. рекомендации. – М., 2008. – 29 c.

2. Rakha A., Aman P., Andersson R. Characterisation of dietary fibre components in rye products // Food Chemistry. – 2010. – Vol. 119 (3). – P. 859–867. – https://doi.org/10.1016/j.foodchem.2009.09.090

3. EFSA Panel on Dietetic Products; Nutrition and Allergies (NDA). Scientific Opinion on Dietary Reference Values for Carbohydrates and Dietary Fibre // European Food Safety Authority Journal. – 2011. – Vol. 8 (3). – P. 1462, 1–77.

4. Institute of Medicine (IOM). Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cholesterol, Protein and Amino Acids (Macronutrients). – The National Academic Press: Washington DC, USA, 2005. – P. 1331.

5. Joint WHO/FAO Expert Consultation. Diet, Nutrition and the Prevention of Chronic Diseases. – World Health Organization: Geneva, Switzerland, 2003. – P. 149.

6. Carbohydrates and Health, Scientific Advisory Committee on Nutrition. – London: TSO, 2015. – P. 369.

7. Farget A. New hypotheses for the health-protective mechanisms of whole-grain cereals: what is beyond fibre? // Nutrition Research Reviews. – 2010. – Vol. 23 (1). – P. 65–134. – https://doi.org/10.1017/S0954422410000041

8. Chawla R., Patil G.R. Soluble dietary fiber // Comprehensive Reviews in Food Science and Food Safety. – 2010. – Vol. 9 (2). – P. 178–196. – https://doi.org/10.1111/j.1541–4337.2009.00099.x

9. Extensive dry ball milling of wheat and rye bran leads to in situ production of arabinoxylan oligosaccharides through nanoscale fragmentation / V. Van Craeyveld, U. Holopainen, E. Selinheimo, K. Poutanen, J.A. Delcour, C.M. Courtin // Journal of Agricultural and Food Chemistry. – 2009. – Vol. 57 (18). – P. 8467–8473. – https://doi.org/10.1021/jf901870r

10. Extractability, stracture and molecular weight of β-glucan from Canadian rye (Secale cereale L.) whole male / S.M. Ragaee, P.S. Wood, Q. Wang [et al.] // Cereal Chemistry. – 2008. – Vol. 85 (3). – P. 283–288. – https://doi.org/10.1094/CCHEM-85–3–0283

11. Glisto L.V., Knudsen K.E.B. Milling of whole grain rye to obtain fractions with different dietary fibre characteristics // Journal of Cereal Science. – 1999. – Vol. 29 (1). – P. 89–97. – https://doi.org/10.1006/jcrs.1998.0214

12. Studies on rye (Secale cereale L.) lines exhibiting a range of extract viscosities. 1. Composition, molecular weight distribution of water extracts, and biochemical characteristics of purified water-extractable arabinoxylan / S.M.Ragaee, G.L.Campbell, G.J. Scoles [et al.] // Journal of Agricaltural and Food Chemisrty. – 2001. – Vol. 49 (5). – P. 2437–2445. – https://doi.org/10.1021/jf001227g

13. Henry R. J. Pentosan and (1→3), (1→4) -b-glucan concentrations in endosperm and whole grain of wheat, barley, oats and rye. Journal of Cereal Science. – 1987. – Vol. 6. – P. 253–258. – https://doi.org/10.1016/S0733–5210(87)80062–0

14. Cereal grain fructans: structure, variability and potential health effects effect / J. Verspreet, E. Dorner, W.V. den Engle [et al.] // Trends in Food Science & Technology. – 2015. – Vol. 43 (1). – P. 32–42. – https://doi.org/10.1016/j.tifs.2015.01.006

15. Variation in the content of dietary fiber and components thereof in wheats in the HEALTHGRAIN Diversity Screen / K. Gebruers, E. Dornez, F. Boros [et al.] // Journal of Agricultural and Food Chemistry. – 2008. – Vol. 56. – P. 9740–9749. – https://doi.org/10.1021/jf800975w

16. Contents of dietary fibre components and their relation to associated bioactive components in whole grain wheat samples from the HEALTHGRAIN diversity screen / A.A.M. Andersson, R.Andersson, V. Piironen [et al.] // Food Chemistry. – 2013. – Vol. 136. – P. 1243–1248. – https://doi.org/10.1016/j.foodchem.2012.09.074

17. Content, structure and viscosity of soluble arabinoxylans in rye grain from several countries / S. Bengtsson, R. Andersson, E. Westerlund, P. Aman // J. Sci. Food Agric. – 1992. – Vol. 58. – P. 331–337. – https://doi.org/10.1002/jsfa.2740580307

18. Izydorczyk M. S., Biliaderis C.G. Cereal Arabinoxylans Advances in Structure and Physicochemical Properties // Carbohydrate Polymers. – 1995). – Vol. 28 (1). – P. 33–48. – https://doi.org/10.1016/0144–8617(95)00077–1

19. Mendez-Encinas M.A., Rascon-Chu A. H.F. Astiazaran-Garsia and D.E. Valencia-Rivera. Ferulated Arabinoxylan and their gels: Functional properties and potential application as antioxidant and anticancer agent // Oxidative Medicine and cellular Longevity. – 2018 (Special issue). – P. 1–22. https://doi.org/10.1155/2018/2314759

20. Microbial ecology: human gut microbes associated with obesity / R.E. Ley, P.J. Turnbaugh, S. Klein, J.I. Gordon // Nature. – 2006. – Vol. 444 (7122). – P. 1022–1023. – https://doi.org/doi:10.1007/s00284–010–9582–9

21. Evaluation of structure in the formation of gels by structurally diverse (1→3), (1→4) -β-d-glucans from four cereal and one lichen species / S.M. Tosh, Y. Brummer, P.J. Wood [et al.] // Carbohydrate Polymers. – 2004. – Vol. 57 (3). – P. 249–259. – https://doi.org/10.1016/j.carbpol.2004.05.009

22. Wood P. J. Oat and rye β-glucan: properties and function // Cereal Chemistry. – 2010. – N.4. – P. 315–330. – https://doi.org/10.1094/CCHEM-87–4–0315

23. Wood P. J., Weisz J., Blackwell B.A., Structural studies of (1→3), (1→4) -β-d-glucans by 13C-nuclear magnetic resonance spectroscopy and by rapid analysis of cellulose-like regions using high-performance an ion-exchange chromatography of oligosaccharides released by lichenase // Cereal. Chemistry. – 1994. – Vol. 71 (3). – P. 301–307.

24. Генотипическая изменчивость содержания пентозанов зерне озимой ржи / М.Л. Пономарева, С.Н. Пономарев, М.Ш. Тагиров, Л.Ф. Гильмуллина, Г.С. Маннапова // Сельскохозяйственная биология. – 2017. – № 52 (5). – С. 1041–1048. – https://doi.org/10.15389/agrobiology.2017.5.1041rus

25. Nutrient and lignin content, dough properties and baking performance of rye samples used in Scandinavia / M. Nillson, P. Aman, H. Harkonen // Acta agriculturæ Scandinavica Section B: Soil and plant science. – 1997. – Vol. 47 (1). – P. 26–34. – https://doi.org/10.1080/09064719709362435

26. Effects of a Bioavailable Arabinoxylan-enriched White Bread Flour on Postprandial Glucose Response in Normoglycemic Subjects / A.G. Falchi, I. Grecchi, C. Muggia [et al.] // Journal of dietary supplements. – 2016. – Vol. 13 (6). – P. 1–8. – https://doi.org/10.3109/19390211.2016.1156798

27. Topping D. Cereal complex carbohydrates and their contribution to human health // Journal of Cereal Science. – 2007. – Vol. 46 (3). – P. 220–229. – https://doi.org/10.1016/j.jcs.2007.06.004

28. Malunga L.N., Eck P., Beta T. Inhibition of intestinal alpha-glucosidase and glucose absorption by feruloylated arabinoxylan mono– and oligosaccharides from corn bran and wheat aleurone // Journal of Nutrition and Metabolism. – 2016. – P. 1–9. – https://doi.org/10.1155/2016/1932532

29. Effects of soluble corn bran arabinoxylans on cecal digestion, lipid metabolism, and mineral balance (Ca, Mg) in rats / Lopez H.W., Levrat, M.A., Guy C. [et al.] // Journal of Nutritional Biochemistry. – 1999. – Vol. 10 (9). – P. 500–509. – https://doi.org/10.1016/S0955–2863(99)00036–4

30. Gunness P., Gidley M. J. Mechanisms underlying the cholesterol-lowering properties of soluble dietary fibre polysaccharides // Food & Function. – 2010. – Vol. 1 (2). – P. 149–155. – https://doi.org/10.1039/c0fo00080a

31. Circulating triglycerides and bile acids are reduced by a soluble wheat arabinoxylan via modulation of bile concentration and lipid digestion rates in a pig model / P. Gunness, B.A Williams., W.J. Gerrits [et al.] // Molecular Nutrition & Food Research. – 2016. – Vol. 60 (3). – P. 642–651. – https://doi.org/10.1002/mnfr.201500686

32. Molecular interactions of a model bile salt porcine bile with (1,3:1,4) – β-glucans and arabinoxylans probes by 13C NMR and SAXS / P. Gunness, B.M. Flanagan, J.P. Mata [et al.] // Food chemistry. – 2015. – Vol. 197. – P. 676–685. – https://doi.org/10.1016/j.foodchem.2015.10.104

33. Viscosity of oat bran-enriched beverages influences gastrointestinal hormonal responses of healthy human / K.R. Juvonen, A.K. Purhonen, A.K. Salmenkallio-Marttila [et al.] // Jornal of Nutrition. – 2008. – Vol. 139 (3). – P. 461–466. – https://doi.org/10.3945/jn.108.099945

34. Cereal-derived arabinoxylans as biological response modifiers: Extraction, molecular features, and immune-stimulating properties / S. Zhang, W. Li, C.J. Smith, H. Musa // Critical Reviews in Food Science and Nutrition. – 2015. – Vol. 55 (8). – P.1035–1052. – https://doi.org/10.1080/10408398.2012.705188

35. Vetvicka V., Vetvickova J. Comparison of immunological effect of commertially available β-glucans // Part III. International Clinical Pathology Journal. – 2016. – Vol. 2 (4). – P. 78–83. – https://doi.org/10.15406/icpjl.2016.02.00046

36. Molecular weight dependency on the production of the TNF stimulated by fractions of rye (1→3), (1→4) β– glucan: rye mixed-linkage β-glucan stimulates the production of TNF / J.P. Roubroeks, L. Ryan, G. Skjak-Bræk, B.E. Christensenn // Scandinavian Journal of Immunology. – 2008. – Vol. 52 (6). – P. 584–587. – https://doi.org/10.1111/j.1365–3083.2000.00826.x

37. In vitro fermentation of polysaccharides of rye, wheat and oat brans and inulin by human faecal bacteria / S. Karppinen, K. Liukkonen, A. – M. Aura // Journal of Science of Food and Agriculture. – 2000. – Vol. 80 (10). – P. 1469–1476. – https://doi.org/10.1002/1097–0010(200008)80:103.0.CO;2-A

38. Arabinoxylan structural characteristics, interaction with gut microbiota and potential health functions / Z. Chen, S. Li, Y. Fu [et al.] // Journal of Functional Foods. – 2019. – Vol. 54. – P. 536–551. – https://doi.org/10.1016/j.jff.2019.02.007

39. Журлова Е.Д., Карпельянц Л.В. Исследование пребиотической активности ксилоолигосахаридов из ржаных и пшеничных отрубей in vitro // Scientific Jornal «ScienceRise». – 2015. – Vol. 4, N 1 (9). – P. 79–84. https://doi.org/10.15587/2313–8416.2015.40627

40. Bifidobacteria and butyrate-producing colon bacteria: importance and strategies for their stimulation in the human gut / A. Riviere, M. Selak, D. Lantin [et al.] // Frontiers in Microbiology. – 2016. – Vol. 7. – P. 1–21. – https://doi.org/10.3389/fmicb.2016.00979

41. Wheat-derived arabinoxylan oligosaccharides with prebiotic effect increase satietogenic gut peptides and reduce metabolic endotoxemia in diet-induced obese mice / A.M. Neyrinck, V.F. Van Hee, N. Piront [et al.] // Nutrition and Diabetes. – 2012. – Vol. 2 (1). – e28-e28. – https://doi.org/10.1038/nutd.2011.24.

42. Szwajgier D., Jakubczyk A. Biotransformation of ferulic acid by Lactobacillus acidophilus KI and selected Bifidobacterium strains // Acta Scientiarum Polonorum Technologia Alimentaria. – 2010. – Vol. 9 (1). – P. 45–59.

43. Macfarlane S., Macfarlane G.T., Cummings J.H. Review Article: Prebiotics in the gastrointestinal tract // Alimentary Pharmacology & Therapeutics. – 2006. – Vol. 24 (5). – P. 701–714. – https://doi.org/10.1111/j.1365–2036.2006.03042.x

44. Fructan content of rye and rye products / S. Karppinen, O. Myllymaki, P. Forsel, K. Poutanen K. // Cereal. Chemistry. – 2009. – Vol. 80 (2). – P. 169–171. – https://doi.org/10.1094/CCHEM.2003.80.2.168

45. Sapirstein H.D.Bioactive compounds in wheat bran / C.Wrigley, H.Corke, K. Seetharaman, J. Faubion (Eds.). Encyclopedia of Food Grains, Nutrition and Food Grains, second ed., 2016. vol. 2. – Elsevier Academic Press, Oxford, 2016. – P. 268–276.

46. Graf E., Eaton J.W. Antioxidant Functions of Phytic Acid // Free Radical Biology & Medicine. – 1990. – Vol. 8 (1). – P. 61–69. – https://doi.org/10.1016/0891–5849(90)90146-a.

47. Mattila P., Pihlava J. – M., Hellström J. Contents of phenolic acids, alkyl– and alkenylresorcinols, and avenanthramides in commercial grain products // Journal of Agricultural and Food Chemistry. – 2005. – Vol. 53. – P. 8290–8295. – https://doi.org/10.1021/jf051437z

48. Content of Phenolic Acids and Ferulic Acid Dehydrodimers in 17 Rye (Secale cereale L.) Varieties / M.F. Andreasen, L.P. Christensen, A.S. Meyer, A. Hansen // Journal of Agricultural and Food Chemistry. – 2000. – Vol. 48 (7). – P. 2837–2842. – https://doi.org/10.1021/jf991266w

49. Dykes L., Rooney L.W. Phenolic compounds in cereal grains and their health benefits // Cereal Foods World. – 2007. – Vol. 52. – P. 105–111. – https://doi.org/10.1094/CFW-52–3–0105

50. Ross A.B., Aman P., Kamal-Eldin A. Alkylresorcinols as markers of whole grain wheat and rye in cereal products // Journal of Agricultural and Food Chemistry. – 2004. – Vol. 52 (26). – P. 8242–8246. – https://doi.org/10.1021/jf049726v

51. Quantification of lignans in food using isotope dilution gas chromatography/mass spectrometry / J.L. Peñalvo, K. Haajanen, N.P. Botting, H. Adlercreutz // Journal of Agricultural and Food Chemistry. – 2005. – Vol. 53 (24). – P. 9342–9347. – https://doi.org/10.1021/jf051488w

52. Определение природных антиоксидантов в пищевых злаках и бобовых культурах / А. Яшин, Я. Яшин, П. Федина, Н. Черноусова // Аналитика. – 2012. – № 1. – С. 32–36.

53. Li L., Shewry P.R., Ward J.L. Phenolic Acids in Wheat Varieties in the HEALTHGRAIN Diversity Screen // Journal of Agricultural and Food Chemistry. – 2008. – Vol. 56 (21). – P. 9732–9739. – https://doi.org/10.1021/jf801069s

54. Diferulates as structural components in soluble and insoluble cereal dietary fibre / M. Bunzel, J. Ralph, J.M. Marita [et al.] // Journal of the Science and Food Agriculture. – 2001. – Vol. 81 (7). – P. 653–660. – https://doi.org/10.1002/jsfa.861

55. Phytochemicals and dietary fiber components in rye varieties in the HEALTHGRAIN diversity screen / L. Nyström, A. – M. Lampi, A.A.M. Andersson // Journal of the Science and Food Agriculture. – 2008. – Vol. 56 (21). – P. 9758–9766. – https://doi.org/10.1021/jf801065r

56. Comparison of the immunological activities of arabinoxylans from wheat bran with alkali and xylanase-aided extraction / S. Zhou, X. Liu, Y. Guo [et al.] // Carbohydrate polymers. – 2010. – Vol. 81 (4). – P. 784–789. – https://doi.org/10.1016/j.carbpol.2010.03.040

57. Malunga L.N., Izydorczyk M., Beta T. Effect of water-extractable arabinoxylans from wheat aleurone and bran on lipid peroxidation and factors influencing their antioxidant capacity // Bioactive Carbohydrates and Dietary Fibre. – 2017. – Vol. 10. – P. 20–26. – https://doi.org/10.1016/j.bcdf.2017.05.001

58. Ferulic Acid Content and Appearance Determine the Antioxidant Capacity of Arabinoxylanoligosaccharides / J. Snelders, E. Dornez, J.A. Delcour, C.M. Courtine // Journal of Agricultural and Food Chemistry. – 2013. – Vol. 61 (42). – P. 10173–10182. – https://doi.org/10.1021/jf403160x

59. Журлова Е.Д. Разработка биотехнологии функциональных ингредиентов из зернового сырья: дис. … канд. техн. наук. – Одесса, 2015. – 250 с.

60. BelobrajdicD.P., BirdA.R.The potential role of phytochemicalsin wholegrain cereals for the prevention of type-2 diabetes // Nutrition Journal. – 2013. – Vol. 12 (62). – P. 1–12. – https://doi.org/10.1186/1475–2891–12–62

61. Fiber and magnesium intake and incidents of type 2 diabetes / M.B. Schulze, M. Sculz, C. Heidemann // Achives of Internal Medicine. – 2007. – Vol. 167 (9). – P. 956–965. – https://doi.org/doi:10.1001/archinte.167.9.956

62. Protection against Oxidative Stress in Diabetic Rats by Wheat Bran Feruloyl Oligosaccharides / S. – I. Ou, G.M. Jackson, X. Jiao // Journal of Agricultural and. Food Chemistry. – 2007. – Vol. 55 (8). – P. 3191–3195. – https://doi.org/10.1021/jf063310v

63. Vitaglione P., A. Napolitano A., Fogliano V. Cereal dietary fibre: a natural functional ingredient to deliver phenolic compounds into the gut // Trends in Food Science & Technology. – 2008. – Vol. 19 (9). – P. 451–463. – https://doi.org/10.1016/j.tifs.2008.02.005

64. Antitumor and immunomodulatory activity of arabinoxylans: A major constituent of wheat bran / L. Cao, X. Liu, T. Qian [et al.] // International Journal of Biological Macromolecules. – 2011. – Vol. 48 (1). – P. 160–164. – https://doi.org/10.1016/j.ijbiomac.2010.10.014

65. Whole grain foodintake and cancer risk. International / L. Chatenoud, A. Tavni, Vecchia La [et al.] // Journal of Cancer. – 1998. – Vol. 77 (1). – P. 24–28. – https://doi.org/10.1002/(sici)1097–0215(19980703)77:13.0.co;2–1

66. Whole grain consumption and risk of colorectal cancer: a population-basedcohort of 60.000 women / S.C. Larsson, E. Giovannucci, L. Berghvist, A. Wolk // British Journal of Cancer. – 2005. – Vol. 92 (9). – P. 1803–1807. – https://doi.org/10.1038/sj.bjc.6602543

67. Dietary fiber ad whole grain consumption in relation to colorectal cancer / A. Schatzkin, T. Mouw, Y. Park [et al.] // The American Journal of Clinical Nutrition. – 2007. – Vol. 85 (5). – P. 1353–1360. – https://doi.org/10.1093/ajcn/85.5.1353.

68. Dietary lignins are precursors of mammalian lignans in rats / A.N. Begum, C. Nicolle, I. Mila [et al.] // The Journal of Nutrition. – 2004. – Vol. 134 (1). – P. 120–127. – https://doi.org/10.1093/jn/134.1.120

69. Adlercreutz C.H., Mazur W. Phyto-estrogens and western diseases. Annals of Medicine. – 1997. – Vol. 29 (2). – P. 95–120. – https://doi.org/10.3109/07853899709113696

70. Soybean phytoestrogen intake and cancer risk / C.H. Adlercreutz, B.R. Goldin, S.L. Gorbach [et al.] // The Journal of Nutrition. – 1995. – Vol. 125 (3). – P. 757S-770S. – https://doi.org/10.1093/jn/125.3_Suppl.757S.

71. Effects of phytoestrogens on aromatase, 3β– and 17β-hydroxysteroid dehydrogenase activities and human breast cancer cells / J. – C. Le Bail, Y. Champavier, A. – J. Chulia, G. Habrioux // Life Sciences. – 2000. – Vol. 66 (14). – P. 1281–1291. – https://doi.org/10.1016/s0024–3205(00)00435–5

72. Putting the Whole Grain Puzzle Together: Health Benefits Associated with Whole Grains-Summary of American Society for Nutrition 2010 Satellite Symposium / S. Jonnalagadda, L. Harnack, R.H. Liu [et al.] // The Journal of Nutrition. – 2011. – Vol. 141 (5). – P. 1011S-1022S. – https://doi.org/10.3945/jn.110.132944

73. Liu R.H. Potential synergy of phytochemicals in cancer prevention: mechanism of action // The Journal of Nutrition. – 2004. – Vol. 134 (12). – P. 3479S-3485S. – https://doi.org/10.1093/jn/134.12.3479S

74. Slavin J. Whole grain and human health // Nutrition Reseach Reviews. – 2004. – N 17 (1). – P. 99–110. – https://doi.org/10.1079/NRR200374


Рецензия

Для цитирования:


Лукьянчикова Н.Л., Скрябин В.А., Табанюхов К.А. ОСОБЕННОСТИ СОСТАВА ОТРУБЕЙ ПШЕНИЦЫ И РЖИ И ИХ РОЛЬ В ПРОФИЛАКТИКЕ ХРОНИЧЕСКИХ ЗАБОЛЕВАНИЙ ЧЕЛОВЕКА. Инновации и продовольственная безопасность. 2020;(4):41-58. https://doi.org/10.31677/2072-6724-2020-30-4-41-58

For citation:


Lukyanchikova N.L., Skryabin V.A., Tabanyukhov K.A. PECULIARITIES OF THE COMPOSITION OF WHEAT AND RYE BRAN AND THEIR ROLE IN THE PREVENTION OF CHRONIC DISEASES OF HUMAN REVIEW. Innovations and Food Safety. 2020;(4):41-58. (In Russ.) https://doi.org/10.31677/2072-6724-2020-30-4-41-58

Просмотров: 487


Creative Commons License
Контент доступен под лицензией Creative Commons Attribution 4.0 License.


ISSN 2311-0651 (Print)