Influence of Lactobacillus plantarum fermentation on the chemical composition and nutritional value of fruit and berry raw materials
https://doi.org/10.31677/2311-0651-2025-48-2-6-25
Abstract
Fermentation is considered a traditional processing method to increase the shelf life of food products and improve the taste of food raw materials. Fruits and berries contain many nutrients and are an acceptable substrate for fermentation by lactic acid bacteria. Lactiplantibacillus plantarum is used as a starter or additional culture for the fermentation process of raw materials of plant and animal origin due to its environmental stability and metabolic versatility. The aim of the study is to review the results of scientific studies of the effect of L. plantarum fermentation on the chemical composition, bioactive compounds, volatile compounds and organoleptic properties of fruits and berries. The material for this study was 49 scientific publications. The search for scientific literature in English and Russian on the topic of the study was carried out in the bibliographic databases Scopus, Web of science, PubMed and Google Scholar. The period 2019– 2025 was adopted as the time frame for the review of scientific publications. An algorithm in accordance with the PRIZMA protocol was used to review the subject field of the conducted study. Scientific search and review of scientific publications on the topic of the study showed that L. plantarum is an effective probiotic for the fermentation of carbohydrate-rich fruit substrates in order to improve the taste and functionality of fruit products due to microbial activity. Fruits fermented with L. plantarum contain many volatile substances, have a higher content of functional compounds and exhibit better biological activity, including antioxidant, anti-inflammatory effects on intestinal microflora, compared with unfermented fruits. Review and analysis of the chemical composition of fermented products, their nutritional value provides the necessary information for the development of functional foods based on fruits processed by fermentation using L. plantarum. At the same time, it should be noted that there is no analysis and scientific conclusions about the strain specificity of L. plantarum in metabolism, the safety of L. plantarum fermented fruit products, and the characteristics of changes in the aroma of various fruits after fermentation with L. plantarum. Future research should focus on toxicology, immunology and molecular nutrition techniques to analyze in detail the functionality of various fermented fruit and vegetable products and to establish the metabolic characteristics of different L. plantarum strains. The results of future research will contribute to a comprehensive understanding of the health benefits of L. plantarum fermented fruit products for humans and to the development and production of quality functional foods.
About the Author
L. Ch. BurakRussian Federation
PhD in Food Science
References
1. Li J., Zhao W., Pan X., Lao F., Liao X., Shi Y., Wu J., Improvement of antioxidant properties of jujube puree by biotransformation of polyphenols via Streptococcus thermophilus fermentation, Food Chemistry: X., 2022, Vol. 13, No. 6, P. 100214, DOI: 10.1016/j.fochx.2022.100214.
2. Burak L. Ch. Polzunovskij vestnik, 2024? No. 1? pp. 99–119, DOI: 10.25712/astu.2072-8921.2024.01.013.
3. Kaur H., Ghosh M., Probiotic fermentation enhances bioaccessibility of lycopene, polyphenols and antioxidant capacity of guava fruit (Psidium guajava L.), Journal of Agriculture and Food Research, 2023, Vol. 14, No. 1, P. 100704, DOI: 10.1016/j.jafr.2023.100704.
4. Zhao X., Tang F., Cai W., Peng B., Zhang P., Shan Ch., Effect of fermentation by lactic acid bacteria on the phenolic composition, antioxidant activity, and flavor substances of jujube-wolfberry composite juice, Lwt, 2023, Vol. 184, No. 6, P. 114884, DOI: 10.1016/j.lwt.2023.114884.
5. Todorov S. D., Baretto Penna A. L., Venema K., Holzapfel W. H., Chikindas M. L., Recommendations for the use of standardised abbreviations for the former Lactobacillus genera, reclassified in the year 2020, Beneficial Microbes, 2023, Vol. 15, No. 1, P. 1–4, DOI: 10.1163/18762891-20230114.
6. Burak L. Ch. Perspektivy ispol’zovaniya molochnokislyh bakterij L. Plantarum dlya fermentacii fruktovyh sokov, Nauchnoe obozrenie. Biologicheskie nauki, 2022, No. 3, pp. 63–71, DOI: 10.17513/srbs.1286.
7. Zhu J., Sun Y., Zhang S., Unraveling the genetic adaptations in cell surface composition and transporters of Lactiplantibacillus plantarum for enhanced acid tolerance, Journal of Agricultural and Food Chemistry, 2024, Vol. 72, No. 10, P. 5368–5378, DOI: 10.1021/acs.jafc.3c01276.
8. Bertarello C., Savio D., Morelli L., Bouzalov S., Davidova D., Bonetti A., Efficacy and safety of Lactobacillus plantarum P 17630 strain soft vaginal capsule in vaginal candidiasis: A randomized non-inferiority clinical trial, European Review for Medical and Pharmacological Sciences, 2024, Vol. 28, No. 1, P. 384–391, DOI: 10.26355/eurrev_202401_34927.
9. Cui Y., Wang M., Zheng Y., Miao K., Qu X., The carbohydrate metabolism of Lactiplantibacillus plantarum, International Journal of Molecular Sciences, 2021, Vol. 22, No. 24, P. 13452, DOI: 10.3390/ijms222413452.
10. Zhong H., Wang L., Jia F., Yan Y., Xiong F., Li Y., Hidayat K., Guan R., Effects of Lactobacillus plantarum supplementation on glucose and lipid metabolism in type 2 diabetes mellitus and prediabetes: A systematic review and meta-analysis of randomized controlled trials, Clinical Nutrition ESPEN, 2024, Vol. 61, P. 377–384, DOI: 10.1016/j.clnesp.2024.04.009.
11. He Y., Wang X., Li P., Lv Y., Nan H., Wen L., Wang Z., Research progress of wine aroma components: A critical review, Food Chemistry, 2023, Vol. 402, No. 5, P. 134491, DOI: 10.1016/j.foodchem.2022.134491.
12. Liu S., Li Y., Song X., Hu X., He Y. , Yin J., Nie Sh., Xie M., Changes in volatile and nutrient components of mango juice by different Lactic acid bacteria fermentation, Food Bioscience, 2023, Vol. 56, No. 10, P. 103141, DOI: 10.1016/j.fbio.2023.103141.
13. Dong Y. M., Zhang W. Y., Li J. R. et al., The transcription factor LaMYC4 from lavender regulates volatile Terpenoid biosynthesis, Bmc Plant Biology, 2022, Vol. 22, No. 1, article 289, DOI: 10.1186/s12870-022-03660-3.
14. Han X., Qin Q., Li C., Zhao X., Song F., An M., Chen Y., Wang X., Huang W., J. Zhan, You Y., Application of non-Saccharomyces yeasts with high β-glucosidase activity to enhance terpene-related floral flavor in craft beer, Food Chemistry, 2023, Vol. 404, No. 12, P. 134726, DOI: 10.1016/j.foodchem.2022.134726.
15. Xing Z., Fu X., Huang H., Xu Y., Wei L., Shan Ch., Du Y., Recent advances in Lactobacillus plantarum fermentation in modifying fruit-based products: flavor property, bioactivity, and practical production applications, Comprehensive Reviews in Food Science and Food Safety, 2025, Vol. 24, No. 2, e70160, DOI: 10.1111/1541-4337.70160.
16. Burak L. Ch., Sapach A. N., Pishchevye sistemy, 2023, Vol. 6, No. 1, pp. 80–94, DOI: 10.21323/2618-9771-2023-6-1-80-94.
17. Markkinen N., Laaksonen O., Yang B. Impact of malolactic fermentation with Lactobacillus plantarum on volatile compounds of sea buckthorn juice, European Food Research and Technology, 2021, Vol. 247, No. 3, P. 719–736, DOI: 10.1007/s00217-020-03660-3.
18. Zhao H., Zhang S., Ma D., Liu Z., Qi P., Wang Z., Di S., Wang X., Review of fruits flavor deterioration in postharvest storage: Odorants, formation mechanism and quality control, Food Research International, 2024, Vol. 182, P. 114077, DOI: 10.1016/j.foodres.2024.114077.
19. Mandha J., Shumoy H., Devaere J., Schouteten J. J., Gellynck X., Winne A., Matemu A. O., Raes K., Effect of lactic acid fermentation of watermelon juice on its sensory acceptability and volatile compounds, Food Chemistry, 2021, Vol. 358, No. 12, P. 129809, DOI: 10.1016/j.foodchem.2021.129809.
20. Mandha J., Shumoy H., Devaere J., Schouteten J. J., Gellynck X., Winne A. D., Matemu A. O., Raes K., Effect of Lactic Acid Fermentation on Volatile Compounds and Sensory Characteristics of Mango (Mangifera indica) Juices, Foods, 2022, Vol. 11, No. 3, P. 383, DOI: 10.3390/foods11030383.
21. Wang J., Wei B., Xu J., Jiang H., Xu Y., Wang Ch, Influence of lactic acid fermentation on the phenolic profile, antioxidant activities, and volatile compounds of black chokeberry (Aronia melanocarpa) juice, Journal of Food Science, 2024, Vol. 89, No. 2, P. 834–850, DOI: 10.1111/1750-3841.16899.
22. Yang W., Liu J., Zhang Q., Liu H., Lv Z. , Zhang Ch., Jiao Z., Changes in nutritional composition, volatile organic compounds and antioxidant activity of peach pulp fermented by lactobacillus, Food Bioscience, 2022, Vol. 49, No. 4, P. 101894, DOI: 10.1016/j.fbio.2022.101894.
23. Shi F., Wang L., Li S., Enhancement in the physicochemical properties, antioxidant activity, volatile compounds, and non-volatile compounds of watermelon juices through Lactobacillus plantarum JHT78 fermentation, Food Chemistry, 2023, Vol. 420, No. 1, P. 136146, DOI: 10.1016/j.foodchem.2023.136146.
24. Burak L. Ch. Vliyanie sovremennyh sposobov obrabotki i sterilizacii na kachestvo plodoovoshchnogo syr’ya i sokovoj produkcii (The influence of modern methods of processing and sterilization on the quality of fruit and vegetable raw materials and juice products), Moscow: INFRA-M, 2025, 236 p., DOI: 10.12737/2154991.
25. Wu C., Li T., Qi J. et al., Effects of lactic acid fermentation-based biotransformation on phenolic profiles, antioxidant capacity and flavor volatiles of apple juice, Lwt, 2020, Vol. 122, P. 109064, DOI: 10.1016/j.lwt.2020.109064.
26. Zhang K., Zhang T. T., Guo R. R., Ye Q., Zhao H.-L., Huang X.-H., The regulation of key flavor of traditional fermented food by microbial metabolism: A review, Food Chemistry: X, 2023, Vol. 19, No. 1, P. 100871, DOI: 10.1016/j.fochx.2023.100871.
27. Sun J., Zhao C., Pu X., Li T., Shi X., Wang B., Cheng W., Flavor and Functional Analysis of Lactobacillus plantarum fermented apricot juice, Fermentation, 2022, Vol. 8, No. 10, P. 533, DOI: 10.3390/fermentation8100533.
28. Maoz I., Lewinsohn E., Gonda I., Amino acids metabolism as a source for aroma volatiles biosynthesis, Current Opinion in Plant Biology, 2022, Vol. 67, No. 1, article 102221, DOI: 10.1016/j.pbi.2022.102221.
29. Jiang J., Xie Y., Cui M., Ma X., Yin R., Chen Y., Li Y., Hu Y., Cheng W., Gao F., Characterization of differences in physicochemical properties, volatile organic compounds and non-volatile metabolites of prune wine by inoculation of different lactic acid bacteria during malolactic fermentation, Food Chemistry, 2024, Vol. 452, P. 139616, DOI: 10.1016/j.foodchem.2024.139616.
30. He Y., Hu M., He W., Li Y., Liu Sh., Hu X., Nie S.-P., Yin J., Xie M., Volatile compound dynamics during blueberry fermentation by lactic acid bacteria and its potential associations with bacterial metabolism, Food Bioscience, 2024, Vol. 59, No. 3, article 103639, DOI: 10.1016/j.fbio.2024.103639.
31. Zhang S., Shang Z., Liu Z., Hu X., Yi J., Flavor production in fermented chayote inoculated with lactic acid bacteria strains: Genomics and metabolomics-based analysis, Food Research International, 2023, Vol. 163, P. 112224, DOI: 10.1016/j.foodres.2022.112224.
32. Yang J., Sun Y., Gao T., Wu Y., Sun H., Zhu Q., Liu Ch., Zhou Ch., Han Y., Tao Y., Fermentation and storage characteristics of «Fuji» apple juice using Lactobacillus acidophilus, Lactobacillus casei and Lactobacillus plantarum: Microbial growth, metabolism of bioactives and in vitro bioactivities, Frontiers in Nutrition, 2022, Vol. 9, No. 9, P. 833906, DOI: 10.3389/fnut.2022.833906.
33. Gengatharan A., Dykes G. A., Choo W. S., Fermentation of red pitahaya extracts using Lactobacillus spp. and Saccharomyces cerevisiae for reduction of sugar content and concentration of betacyanin content, Journal of Food Science and Technology, 2021, Vol. 58, No. 9, P. 3611–362, DOI: 10.1007/s13197-021-05116-2.
34. Zhang C., Chen X., Guo X., Guo R., Zhu L., Qiu X., Yu X., Chai J., Gu Ch., Feng Z., A novel strategy for improving the antioxidant, iridoid, and flavor properties of Noni (Morinda citrifolia L.) fruit juice by lactic acid bacteria fermentation, Lwt, 2023, Vol. 184, No. 4, P. 115075, DOI: 10.1016/j.lwt.2023.115075.
35. Muñoz R., Rivas B. de las, Rodríguez H., Esteban-Torres M., Reverón I., Santamaría L., Landete J. M., Plaza-Vinuesa L., Sánchez-Arroyo A., Jiménez N., Curiel J. A., Food phenolics and Lactiplantibacillus plantarum, International Journal of Food Microbiology, 2024, Vol. 412, No. 2, P. 110555, DOI: 10.1016/j.ijfoodmicro.2023.110555.
36. Ricci A., Cirlini M., Maoloni A., Del Rio D., Calani L., Bernini V., Galaverna G., Neviani E., Lazzi C., Use of dairy and plant-derived lactobacilli as starters for cherry juice fermentation, Nutrients, 2019, Vol. 11, No. 2, article 213, DOI: 10.3390/nu11020213.
37. Zhou Y., Wang R., Zhang Y., Yang Y., Sun X., Zhang Q., Yang N., Biotransformation of phenolics and metabolites and the change in antioxidant activity in kiwifruit induced by Lactobacillus plantarum fermentation, Journal of the Science of Food and Agriculture, 2020, Vol. 100, No. 8, P. 3283–3290, DOI: 10.1002/jsfa.10272.
38. Burak L. Ch. Ispol’zovanie sovremennyh tekhnologij v proizvodstve fermentirovannyh produktov, Nauchnoe obozrenie. Tekhnicheskie nauki, 2023, No. 5, pp. 5–13, DOI: https://doi.org/10.17513/srts.1446.
39. Oliveira S. D., Araújo C. M., Borges G., Lima M. D. S., Viera V. B., Garcia E. F., Souza E. L., Oliveir M. E. G., Improvement in physicochemical characteristics, bioactive compounds and antioxidant activity of acerola (Malpighia emarginata D. C.) and guava (Psidium guajava L.) fruit by-products fermented with potentially probiotic lactobacilli, Lwt, 2020, Vol. 134, p. 110200, DOI: 10.1016/j.lwt.2020.110200.
40. Braga A. R. C., de Souza Mesquita L. M., Martins P. L. G. et al., Lactobacillus fermentation of jussara pulp leads to the enzymatic conversion of anthocyanins increasing antioxidant activity, Journal of Food Composition and Analysis, 2018, Vol. 69, P. 162–170, DOI: https://doi.org/10.1016/j.jfca.2017.12.030.
41. Wang Q., Hao L., Zhang A., Zhao H., Zhang B., Extraction and characterization of polysaccharides from Schisandra sphenanthera fruit by Lactobacillus plantarum CICC 23121-assisted fermentation, International Journal of Biological Macromolecules, 2024, Vol. 259, part 1, P. 129135, DOI: https://doi.org/10.1016/j.ijbiomac.2023.129135.
42. Huang F., Hong R., Zhang R., Dong L., Bai Y., Liu L., Jia X., Wang G., Zhang M., Dynamic variation in biochemical properties and prebiotic activities of polysaccharides from longan pulp during fermentation process, International Journal of Biological Macromolecules, 2019, Vol. 132, No. 1, P. 915–921, DOI: 10.1016/j.ijbiomac.2019.04.005.
43. Wan Y. J., Shi H. F., Xu R., Yin J.-Y., Nie S.-P., Xiong T., Xie M.-Y., Origin of hypoglycemic benefits of probiotic-fermented carrot pulp, Journal of Agricultural and Food Chemistry, 2019, Vol. 67, No. 3, P. 895–904, DOI: 10.1021/acs.jafc.8b06976.
44. Halliwell B. Understanding mechanisms of antioxidant action in health and disease, Nature Reviews Molecular Cell Biology, 2024, Vol. 25, No. 1, P. 13–33, DOI: 10.1038/s41580-023-00645-4.
45. Pontonio E., Montemurro M., Pinto D., Marzani B., Trani A., Ferrara G., Mazzeo A., Gobbetti M., Rizzello C. G., Lactic acid fermentation of pomegranate juice as a tool to improve antioxidant activity, Frontiers in Microbiology, 2019, Vol. 10, P. 1550, DOI: 10.3389/fmicb.2019.01550.
46. Wang Y., Han C., Cheng J., Wang Z., Liu L., Huang H., Liang Q., Liu R., Ran B., Li W., Fermented Cerasus humilis fruits protect against high-fat diet induced hyperlipidemia which is associated with alteration of gut microbiota, Journal of the Science of Food and Agriculture, 2022, Vol. 103, No. 5, P. 2554–2563, DOI: 10.1002/jsfa.12377.
47. Bamidele M. O., Bamikale M. B., Cárdenas-Hernández E., Bamidele M. A., Castillo-Olvera G., Cortés J. S., Aguilar C. N., Bioengineering in solid-state fermentation for next sustainable food bioprocessing, Next Sustainability, 2025, Vol. 6, P. 100105, DOI: 10.1016/j.nxsust.2025.100105.
48. Quan Q., Liu W., Guo J., Ye M., Zhang J., Effect of six lactic acid bacteria strains on physicochemical characteristics, antioxidant activities and sensory properties of fermented orange juices, Foods, 2022, Vol. 11, No. 13, P. 1920, DOI: 10.3390/foods11131920.
49. Zhao J., Zeng X., Xi Y., Li J., Recent advances in the applications of Lactobacillus helveticus in the fermentation of plant-based beverages: A review, Trends in Food Science & Technology, 2024, Vol. 147, No. 4, P. 104427, DOI: 10.1016/j.tifs.2024.104427.
50. Burak L. Ch. Izvestiya vysshih uchebnyh zavedenij. Pishchevaya tekhnologiya, 2024, No. 2-3 (396), pp. 6–13, DOI: 10.26297/0579-3009.2024.2-3.1.
51. Li Q., Zeng X., Fu H., Wang X., Guo X., Wang M., Lactiplantibacillus plantarum: A comprehensive review of its antifungal and anti-mycotoxic effects, Trends in Food Science & Technology, 2023, Vol. 136, No. 4, P. 224–238, DOI: 10.1016/j.tifs.2023.04.019.
Review
For citations:
Burak L.Ch. Influence of Lactobacillus plantarum fermentation on the chemical composition and nutritional value of fruit and berry raw materials. Innovations and Food Safety. 2025;(2):6-25. (In Russ.) https://doi.org/10.31677/2311-0651-2025-48-2-6-25