Neural network forecasting of productive moisture reserves in soil before sowing grain crops
https://doi.org/10.31677/2311-0651-2024-46-4-91-102
Abstract
Soil moisture reserves are one of the main factors limiting the growth and development of plants during the vegetation period of agricultural crops, their preliminary assessment plays a major role in the planning of agrotechnical measures for the spring summer period, which in turn affects the yield and efficiency of agricultural production. The article proposes a method of predicting moisture content in a meter layer of soil before sowing grain crops, based on the construction and training of an artificial neural network. To build an artificial neural network we used the data of multifactorial field experience of the Siberian Research Institute of Crop Production of SFNCA RAS (central forest-steppe). The data include the results of studies of agrophysical and agrochemical factors in a four-field grain-fallow crop rotation from 1996 to 2018. T The constructed artificial neural network has the architecture of a multilayer perseptron consisting of an input, hidden and output layer. The input layer accepts data in the form of predictors, namely: predecessor, tillage method, weather conditions, autumn productive moisture reserve of the previous year, i. e. factors affecting the predicted variable. The hidden layer transforms and processes input data, while the output layer generates model predictions. The developed artificial neural network demonstrated a fairly high accuracy of forecasting. The total percentage of reliably predicted observations was 80.6 %. The ROC analysis performed to evaluate the predictive ability of the neural network showed that the area under the ROC curve for each category was close to 1. This indicates that the neural network has high predictive power and is able to accurately identify the different categories of the target indicator.
About the Authors
T. A. KizimovaRussian Federation
T.A. Kizimova, Junior Researcher
Н. В. Vasilieva
Russian Federation
Н.В. Vasilieva, PhD in Biological Sciences, Senior Researcher
V. A. Shpak
Russian Federation
V.A. Shpak, PhD in Physical and Mathematical Sciences, Senior Researcher
References
1. Verigo S.A., Razumova S.A. Pochvennaya vlaga i ee znachenie v sel`skoxozyajstvennom proizvodstve (Soil moisture and its importance in agricultural production), Leningrad: Gidrometeoizdat, 1963, 292 p.
2. Mitrofanov D.V., Maksyutov N.A., Skoroxodov V.Yu. [i dr.], Zhivotnovodstvo i kormoproizvodstvo, 2017, No. 4 (100), pp. 225–233. (In Russ.)
3. Sharkov I. N., Kolbin S. A. Vestnik NGAU, 2020, No. 1 (54), pp. 33–41, DOI: 10.31677/2072-6724-2020-54-1-33-41. (In Russ.)
4. Churzin V.N., Serebryakov A.A., Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: nauka i vy`sshee professional`noe obrazovanie, 2014, No. 3 (35), pp. 83–88. (In Russ.)
5. Muxitov L.A. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2010, No. 4 (28-1), pp. 35–37. (In Russ.)
6. Serebryakov V.F. Izvestiya Nizhnevolzhskogo agrouniversitetskogo kompleksa: Nauka i vy`sshee professional`noe obrazovanie. – 2013. – № 4 (32). – S. 63–67. (In Russ.)
7. Maksimova N.B., Tarasova S.B., Morkovkin G.G., Arnaut D.V., Vestnik Altajskogo gosudarstvennogo agrarnogo universiteta, 2018, No. 4 (162), pp. 87–92. (In Russ.)
8. Vadyunina A.F., Korchagina Z.A. Metody` issledovaniya fizicheskix svojstv pochv (Methods of research of physical properties of soils), Moscow: Agropromizdat, 1986, 415 p.
9. Adaptivno-landshaftny`e sistemy` zemledeliya Novosibirskoj oblasti / Kiryushin V. I., Vlasenko A. N., Kalichkin V. K. [i dr.]. – Novosibirsk: Sibirskij NII zemledeliya i ximizacii sel`skogo xozyajstva, 2000. – 388 s.
10. Fedorovskij D.V. Agroximicheskie metody` issledovanij pochv (Agrochemical methods of soil research), Moscow: Nauka, 1975, 333 p.
11. Neverov A.A. Izvestiya Orenburgskogo gosudarstvennogo agrarnogo universiteta, 2020, No. 2 (82), pp. 14–18. (In Russ.)
12. Tarasova L.L. Agrofizika, 2021, No. 1, pp. 33–38. (In Russ.)
13. Medvedeva E.S., Atoyan T.V., Kirimova K.V., Molodoj ucheny`j, 2020, No. 51 (341), pp. 449–452. (In Russ.)
14. Antonova O.S., Nevryuev A.M., Shlapak P.A., Geoinformacionnoe kartografirovanie v regionax Rossii (Geoinformation mapping in the regions of Russia), Proceedings of the XI All-Russian Scientific and Practical Conference, Voronezh, November 23-24, 2020, Voronezh: Cifrovaya poligrafiya, 2020, pp. 22– 27. (In Russ.)
15. Kashyap B., Kumar R. Sensing Methodologies in Agriculture for Soil Moisture and Nutrient Monitoring, IEEE Access, 2021, Vol. 9, P. 14095–14121.
16. Hegazi E., Samak A., Lingbo Ya., Huang R., Prediction of Soil Moisture Content from Sentinel-2 Images Using Convolutional Neural Network CNN, Agronomy, 2023, No. 13 (3), P. 656–674, DOI: 10.3390/agronomy13030656.
17. Zejliger A.M., Muzalevskij K.V., Zinchenko E.V., Ermolaeva O.S., Zhurnal radioe`lektroniki, 2023, No. 1, pp. 1–17. (In Russ.)
18. Chatterjee S., Dey N., Sen S., Sustainable Computing: Informatics and Systems, 2018, Vol. 28, P. 100279, DOI: https://doi.org/10.1016/j.suscom.2018.09.002.
19. Golov V.A., By`kov F.L., Gidrometeorologicheskie issledovaniya i prognozy`, 2022, No. 3 (385), pp. 144– 160, DOI: 10.37162/2618-9631-2022-3-144-160. (In Russ.)
20. Grubsiic V., Vasic D., Ljubic H. [et al.], Soil Moisture Prediction with Attention-Enhanced Models: A Deep Learning Approach, Authorea Preprints, 2024, DOI: 10.36227/techrxiv.170792419.92585917/v1.
21. Sankhadeep C., Nilanjan D., Soumya S., Soil moisture quantity prediction using optimized neural supported model for sustainable agricultural applications, Sustainable Computing: Informatics and Systems, 2020, Vol. 28, article 10027, DOI: https://doi.org/10.1016/j.suscom.2018.09.002
22. Svishhyov A.V., Gejker A.M., E-Scio, 2021, No. 11 (62), pp. 283–291.
23. Skvorczov E.A., Nabokov V.I., Nekrasov K.V. [i dr.], Agrarny`j vestnik Urala, 2019, No. 8 (187), pp. 91–98. (In Russ.)
24. Kalichkin V.K., Koryakin R.A., Kucenogij P.K. Intellektual`ny`e sistemy` v sel`skom xozyajstve (Intelligent systems in agriculture), Novosibirsk: SFNCzA RAN, 2020, 296 p.
25. Byuyul` A., Ceffel` P. SPSS: iskusstvo obrabotki informacii (SPSS: the art of information processing), Saint Petersburg: Dia-SoftYuP, 2005, 608 p.
26. Nikolenko S.I., Kadurin A.A., Arxangel`skaya E.V. Glubokoe obuchenie (Deep learning), Saint Petersburg: Piter, 2018, 480 p.
27. Khaikin S. Neural networks: full course, Moscow: Williams, 2016, 1104 p.
Review
For citations:
Kizimova T.A., Vasilieva Н.В., Shpak V.A. Neural network forecasting of productive moisture reserves in soil before sowing grain crops. Innovations and Food Safety. 2024;(4):91-102. (In Russ.) https://doi.org/10.31677/2311-0651-2024-46-4-91-102