УДК 631.95:632.95.024

ГУМИНАТРИН КАК АНТИДЕПРЕССАНТ ГЕРБИЦИДОВ

Т.В. Холдобина - старший преподаватель

ФГБОУ ВПО Новосибирский государственный аграрный университет Ключевые слова: гербициды, пшеница, гуминатрин, антидепрессант Показана биологическая и хозяйственная эффективность гербицидов и их баковых смесей с бактофитом на яровой пшенице. Вклад антидепрессанта в прибавку зерна составляет от 13,5 до 35,5 %, уровень рентабельности производства зерна составил 51,4 %.

GUMINATRIN AS ANTIDEPRESSANTS HERBICIDE

T.V. Holdobina - senior teacher FSBEI HPE Novosibirsk State Agrarian University. Novosibirsk

Keywords: herbicides, wheat, guminatrin, antidepressant

The biological and economic efficiency of herbicides and their tank mixtures with baktofitom on spring wheat. Contribution antidepressant increase in grain ranges from 13.5 to 35.5%, the level of profitability of grain production amounted to 51.4%.

Важным элементом технологий возделывания зерновых культур в нашей стране является защита посевов от сорняков. При высокой засоренности яровой пшеницы потери урожая зерна могут достигать 25-40% [4, 6]. Для борьбы с сорняками обычно используют гербициды. Однако они являются биологически активными веществами и могут негативно влиять на компоненты агроценоза. Устранить подобное влияние и повысить эффективность обработок можно с помощью биологических антидепрессантов [7]. В качестве их в баковые смеси с гербицидами предложено добавлять бактериальные культуры, биологически активные вещества растительного происхождения и препараты из торфа [1-3]. Последние представляют собой гуминовые вещества, относящиеся высокомолекулярным азотсодержащим оксикарбоновым кислотам, способные воздействовать на все стадии роста и развития растений.

Целью наших исследований стала оценка действия баковых смесей

гербицидов с антидепрессантом гуминатрином на яровую пшеницу, микрофлору и фитотоксичность почвы в северной лесостепи Приобья. Гуминатрин представляет собой смесь гуминовых кислот, к которым добавлены макро- и микроэлементы.

ОБЪЕКТЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования проводили в учебно-производственном хозяйстве НГАУ «Тулинское» в 2006-2007 гг. Почва участка — выщелоченный чернозем среднемощный, среднегумусный, тяжелосуглинистый. В мелко деляночных опытах высевали сорт ранней яровой пшеницы Новосибирская 29. Использовали гербициды гепард экстра (0,6 л/га), ларен (10 г/га) и трезор (0,8 л/га), биатлон (0,5 л/га). В баковой смеси с ними испытывали 3 дозы гуминатрина: 0,3, 0,5 и 1,0 л/га. Размер делянок в опытах 10 м², повторность четырехкратная.

Оценивали реакцию пшеницы на гербициды и их смесь с гуминатрином по развитию обыкновенной корневой гнили [9], численность основных групп почвенных микроорганизмов [8] через 30 дней после внесения гербицидов, урожайность культуры и фитотоксичность почвы в последействии [5] по биотесту, редису сорта «Жара».

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Известно, что гербициды в засушливых условиях способны оказывать фитотоксическое действие на культуру. Его оценили по физиологической устойчивости яровой пшеницы к корневой гнили. На фоне применения гуминатрина пшеница заболевала меньше (табл. 1).

Таблица 1. Влияние баковой смеси гербицидов с гуминатрином на развитие корневой гнили яровой пшеницы

Вариант	% развития в начале выхода растений в трубку	
	Корни	Эпикотиль
гепард	7,4	15,8
гепард+0,3 л/га гуминатрин	7,2	10,9
гепард +0,5 л/га гуминатрин	5,0	12,3
гепард +1,0 л/га гуминатрин	3,1	11,0
ларен	5,1	9,7
ларен +0,3 л/га гуминатрин	3,9	10,4
ларен +0,5 л/га гуминатрин	3,8	10,5
ларен+1,0 л/га гуминатрин	3,0	5,7
трезор	10,4	12,2
трезор+0,3 л/га гуминатрин	4,8	11,2
трезор +0,5 л/га гуминатрин	3,2	7,0
трезор +1,0 л/га гуминатрин	2,2	5,0

Оздоравливались как корни, так и органы на границе почва-воздух. Глубина поражения корней снижалась до 1,7-4,7 раз, эпикотиль поражался слабее в 1,4-2,4 раза. Эффективнее стресс снимали концентрации 0,5 и 1,0 л/га.

Баковая смесь гербицидов с антидепрессантом гуминатрином оказала побочное воздействие на почвенные микроорганизмы. Добавка гуминатрина к ларену и гепарду в дозе 0,3 и 0,5 л/га стимулировала развитие микроорганизмов (рис. 1). На фоне трезора действие гуминатрина было не однозначным. Но при этом и сам трезор (и его аналог биатлон) негативно действовали на почвенные бактерии (эти препараты содержат в своем составе эфиры 2,4 Д).

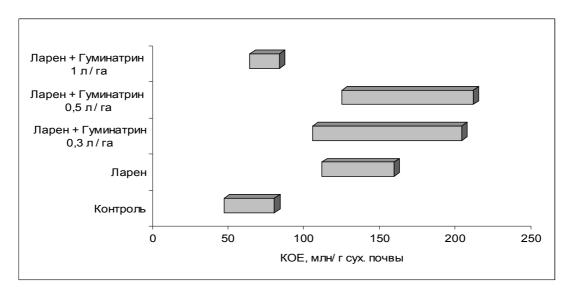


Рис. 1. Влияние баковой смеси гуминатрина с лареном на численность агрономически полезной микрофлоры в почве

Максимальная доза гуминатрина 1 л/га подавляла развитие групп бактерий, разлагающих в почве белковые соединения и олигонитрофиллов. Слабо реагировал на гербициды и их смесь с гуминатрином свободноживущий азотфиксатор *Azotobacter*. При этом в почве менялась скорость минерализации органических остатков. Вектор изменения зависел от погоды в период наибольшей активности микроорганизмов, июле месяце. В засушливом году минерализация подавлялась, что предотвращало потери азота. В августе в фазу налива и созревания зерна растения оказались хорошо обеспечены азотом и сформировали урожай зерна на 85,8-110,6% превышающий контроль.

Таблица 2 Влияние гуминатрина в баковых смесях с гербицидами на урожайность яровой пшенице в 2006–2007 гг.

	Урожай, ц/га	
Вариант	2006 г.	2007 г.
гепард экстра	23,6	26,8
гепард экстра+гуминатрин (0,3 л/га)	21,7	25,4
гепард экстра+гуминатрин (0,5 л/га)	28,9	28,5
гепард экстра+гуминатрин (1,0 л/га)	20,3	28,5
ларен	23,2	26,2
ларен+гуминатрин (0,3 л/га)	18,4	27,5
ларен+гуминатрин (0,5 л/га)	17,6	28,8
ларен+гуминатрин (1,0 л/га)	29,7	27,2
трезор	23,3*	24,2
трезор+гуминатрин (0,3 л/га)	17,4*	26,3
трезор+гуминатрин (0,5 л/га)	15,9*	28,1
трезор+гуминатрин (1,0 л/га)	26,2*	26,2
HCP ₀₅	2,6	4,5

^{*}В 2006 г. применяли биатлон, аналог трезора.

Во влажных условиях (июль 2007 г.) минерализация, наоборот, по отношению к контролю усиливалась в 2 раза. Высвобождающийся Азот органических остатков активно промывался за пределы корнеобитаемого слоя почвы, что снизило на фоне 1 л/ га гуминатрина урожайность зерна яровой пшеницы.

Применяемые в наших опытах препараты могут сохраняться в виде остатков в почве до следующего года и оказывать фитотоксическое действие на последующую

культуру. Поэтому осенью в почве определили ее фитотоксичность по снижению длины корней проростков редиса (табл. 3).

Таблица 3 Фитотоксическое действие гербицидов и их баковой смеси с гуминатрином на выщелоченный чернозем в последействии

Вариант	Длина корня, мм	% к контролю		
Изменение под влиянием гербицидов				
контроль	34,65	-		
гепард	31,25	90,2		
ларен	31,12	89,8		
трезор	30,50	88,0		
Изменение под влиянием гуминатрина				
гепард	31,25	90,2		
гепард+0,3л/га гуминатрин	31,80	91,8		
гепард +0,5л/га гуминатрин	33,48	96,6		
гепард +1,0л/га гуминатрин	33,18	95,8		

На делянках, обработанных гербицидами, в последействии выявился слабый фитотоксический эффект: гербициды угнетали ростовые процессы редиса на 10-12%. В случае совместного применения гуминатрина и гербицидов, напротив, редис имел более развитые корни. Таким образом, применение гуминатрина в баковой смеси с гербицидами способствует снижению фитотоксического последействия гербицидов.

Выводы

1. Гуминатрин в качестве антидепрессанта к гербицидам снижает их фитотоксическое действие на культуру. Чем выше в баковой смеси с гербицидами доза гуминатрина, тем меньше поражается яровая пшеница

болезнями.

- 2. Влияние гуминатрина на биогенность почвы зависит от примененной дозы. В дозах 0,3 и 0,5 л/га препарат повышает биогенность почвы. Доза препарата 1 л/га в год может угнетать развитие агрономически полезной микрофлоры.
- 3. В случае применения антидепрессанта гуминатрина урожайность яровой пшеницы повышается на 4-28 %.
- 4. Добавление гуминатрина к гербицидам снижает уровень фитотоксичности почвы в последействии.

Библиографический список

- 1. Гаврилец Т.В. Действие баковой смеси с биологическим препаратом гуминатрином на микрофлору почвы и урожай яровой пшеницы / Т.В. Гаврилец // Матер. Х научной школы-конф. студентов и молодых ученых «Экология Южной Сибири и сопредельных территорий». Абакан: Изд. Хакасского государственного университета им. Н.Ф. Катанова. 2006. Т.2. С. 151-152.
- 2. Екатеринина Л.Н. Гуминовые препараты из углей для повышения урожайности сельскохозяйственных культур. / Л.Н. Екатеринина, Л.В. Мотовилова, Р.Х. Аляутдинова, В.В. Родэ. М: 1989 87 с.
- 3. Коробов В.А. Применение бактофита в качестве / В.А. Коробов, Л.Н. // Защита и карантин растений. -2007. -№ 3. .41-42.
- 4. Милащенко Н.З. Борьба с сорняками на полях Сибири. Омск: Зап.-Сиб. Изд-во, 1978. – 134 с.
- 5. Минеев В.Г. Агрохимия биология и экология почвы. / В.Г. Минеев, Е.Х. Ремпе. М. Росагроиздат, 1990. 206 с.
- 6. Никитенко В.Г. С учетом местных условий. / В.Г. Никитенко, Т.С. Захарченко // Защита и карантин растений. 2003. №5. С. 24.

- 7. Повышение адаптивности яровой пшеницы к стрессовому воздействию гербицидов: Автореф. дис. на соиск. уч. степ. канд. с.-х. акад.. Тюмень, 2005. 18 с.
- 8. Сэги Й. Методы почвенной микробиологии / Под ред. Г.С. Муромцева. М.: Колос, 1983. 296 с.
- 9. Чулкина В.А. Методические указания по учету обыкновенной корневой гнили хлебных злаков в Сибири дифференцированно по органам. / СО ВАСХНИЛ. Новосибирск, 1972. 21 с.